Artículo

Schor, I.E.; Degner, J.F.; Harnett, D.; Cannavò, E.; Casale, F.P.; Shim, H.; Garfield, D.A.; Birney, E.; Stephens, M.; Stegle, O.; Furlong, E.E.M. "Promoter shape varies across populations and affects promoter evolution and expression noise" (2017) Nature Genetics. 49(4):550-558
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Animal promoters initiate transcription either at precise positions (narrow promoters) or dispersed regions (broad promoters), a distinction referred to as promoter shape. Although highly conserved, the functional properties of promoters with different shapes and the genetic basis of their evolution remain unclear. Here we used natural genetic variation across a panel of 81 Drosophila lines to measure changes in transcriptional start site (TSS) usage, identifying thousands of genetic variants affecting transcript levels (strength) or the distribution of TSSs within a promoter (shape). Our results identify promoter shape as a molecular trait that can evolve independently of promoter strength. Broad promoters typically harbor shape-associated variants, with signatures of adaptive selection. Single-cell measurements demonstrate that variants modulating promoter shape often increase expression noise, whereas heteroallelic interactions with other promoter variants alleviate these effects. These results uncover new functional properties of natural promoters and suggest the minimization of expression noise as an important factor in promoter evolution.

Registro:

Documento: Artículo
Título:Promoter shape varies across populations and affects promoter evolution and expression noise
Autor:Schor, I.E.; Degner, J.F.; Harnett, D.; Cannavò, E.; Casale, F.P.; Shim, H.; Garfield, D.A.; Birney, E.; Stephens, M.; Stegle, O.; Furlong, E.E.M.
Filiación:European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
Department of Statistics, Purdue University, West Lafayette, IN, United States
Department of Human Genetics, University of Chicago, Chicago, IL, United States
Instituto de Fisiologia, Biologoa Molecular y Neurociencias (IFIBYNE-CONICET), Buenos Aires, Argentina
Palabras clave:Article; cytometry; Drosophila; genetic variation; noise; nonhuman; priority journal; promoter region; single cell analysis; animal; evolution; genetic transcription; genetics; noise; physiology; promoter region; transcription initiation site; Animals; Biological Evolution; Drosophila; Genetic Variation; Noise; Promoter Regions, Genetic; Transcription Initiation Site; Transcription, Genetic
Año:2017
Volumen:49
Número:4
Página de inicio:550
Página de fin:558
DOI: http://dx.doi.org/10.1038/ng.3791
Título revista:Nature Genetics
Título revista abreviado:Nat. Genet.
ISSN:10614036
CODEN:NGENE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10614036_v49_n4_p550_Schor

Referencias:

  • Kadonaga, J.T., Perspectives on the RNA polymerase II core promoter (2012) Wiley Interdiscip. Rev. Dev. Biol., 1, pp. 40-51
  • Sandelin, A., Mammalian RNA polymerase II core promoters: Insights from genome-wide studies (2007) Nat. Rev. Genet., 8, pp. 424-436
  • Lenhard, B., Sandelin, A., Carninci, P., Metazoan promoters: Emerging characteristics and insights into transcriptional regulation (2012) Nat. Rev. Genet., 13, pp. 233-245
  • Li, X., Noll, M., Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in the Drosophila embryo (1994) EMBO J., 13, pp. 400-406
  • Hansen, S.K., Tjian, R., TAFs and TFIIA mediate differential utilization of the tandem Adh promoters (1995) Cell, 82, pp. 565-575
  • Butler, J.E., Kadonaga, J.T., Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs (2001) Genes Dev., 15, pp. 2515-2519
  • Zehavi, Y., Kuznetsov, O., Ovadia-Shochat, A., Juven-Gershon, T., Core promoter functions in the regulation of gene expression of Drosophila dorsal target genes (2014) J. Biol. Chem., 289, pp. 11993-12004
  • Merli, C., Bergstrom, D.E., Cygan, J.A., Blackman, R.K., Promoter specificity mediates the independent regulation of neighboring genes (1996) Genes Dev., 10, pp. 1260-1270
  • Juven-Gershon, T., Hsu, J.Y., Kadonaga, J.T., Caudal a key developmental regulator, is a DPE-specific transcriptional factor (2008) Genes Dev., 22, pp. 2823-2830
  • Zabidi, M.A., Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation (2015) Nature, 518, pp. 556-559
  • Carninci, P., Genome-wide analysis of mammalian promoter architecture and evolution (2006) Nat. Genet., 38, pp. 626-635
  • Shiraki, T., Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 15776-15781
  • Forrest, A.R., A promoter-level mammalian expression atlas (2014) Nature, 507, pp. 462-470
  • Hoskins, R.A., Genome-wide analysis of promoter architecture in Drosophila melanogaster (2011) Genome Res., 21, pp. 182-192
  • Akalin, A., Transcriptional features of genomic regulatory blocks (2009) Genome Biol., 10, p. R38
  • Suzuki, Y., Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA start sites (2001) EMBO Rep., 2, pp. 388-393
  • Cooper, S.J., Trinklein, N.D., Anton, E.D., Nguyen, L., Myers, R.M., Comprehensive analysis of transcriptional promoter structure and function in 1% of the human genome (2006) Genome Res., 16, pp. 1-10
  • FitzGerald, P.C., Sturgill, D., Shyakhtenko, A., Oliver, B., Vinson, C., Comparative genomics of Drosophila and human core promoters (2006) Genome Biol., 7, p. R53
  • Ohler, U., Identification of core promoter modules in Drosophila and their application in accurate transcription start site prediction (2006) Nucleic Acids Res., 34, pp. 5943-5950
  • Ni, T., A paired-end sequencing strategy to map the complex landscape of transcription initiation (2010) Nat. Methods, 7, pp. 521-527
  • Rach, E.A., Yuan, H.-Y.Y., Majoros, W.H., Tomancak, P., Ohler, U., Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome (2009) Genome Biol., 10, p. R73
  • Nozaki, T., Tight associations between transcription promoter type and epigenetic variation in histone positioning and modification (2011) BMC Genomics, 12, p. 416
  • Rach, E.A., Transcription initiation patterns indicate divergent strategies for gene regulation at the chromatin level (2011) PLoS Genet., 7, p. e1001274
  • Haberle, V., Two independent transcription initiation codes overlap on vertebrate core promoters (2014) Nature, 507, pp. 381-385
  • Main, B.J., Smith, A.D., Jang, H., Nuzhdin, S.V., Transcription start site evolution in Drosophila (2013) Mol. Biol. Evol., 30, pp. 1966-1974
  • Lappalainen, T., Transcriptome and genome sequencing uncovers functional variation in humans (2013) Nature, 501, pp. 506-511
  • Montgomery, S.B., Transcriptome genetics using second generation sequencing in a Caucasian population (2010) Nature, 464, pp. 773-777
  • Pickrell, J.K., Understanding mechanisms underlying human gene expression variation with RNA sequencing (2010) Nature, 464, pp. 768-772
  • Francesconi, M., Lehner, B., The effects of genetic variation on gene expression dynamics during development (2014) Nature, 505, pp. 208-211
  • Huang, W., Genetic basis of transcriptome diversity in Drosophila melanogaster (2015) Proc. Natl. Acad. Sci. USA, 112, pp. E6010-E6019
  • Massouras, A., Genomic variation and its impact on gene expression in Drosophila melanogaster (2012) PLoS Genet., 8, p. e1003055
  • Cannavo, E., Genetic variants regulating expression levels and isoform diversity during embryogenesis (2017) Nature, 541, pp. 402-406
  • Takahashi, H., Lassmann, T., Murata, M., Carninci, P., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing (2012) Nat. Protoc., 7, pp. 542-561
  • Mackay, T.F., The Drosophila melanogaster Genetic Reference Panel (2012) Nature, 482, pp. 173-178
  • Engstrom, P.G., Ho Sui, S.J., Drivenes, O., Becker, T.S., Lenhard, B., Genomic regulatory blocks underlie extensive microsynteny conservation in insects (2007) Genome Res., 17, pp. 1898-1908
  • Van De Geijn, B., McVicker, G., Gilad, Y., Pritchard, J.K., WASP: Allele-specific software for robust molecular quantitative trait locus discovery (2015) Nat. Methods, 12, pp. 1061-1063
  • Korte, A., A mixed-model approach for genome-wide association studies of correlated traits in structured populations (2012) Nat. Genet., 44, pp. 1066-1071
  • Casale, F.P., Rakitsch, B., Lippert, C., Stegle, O., Efficient set tests for the genetic analysis of correlated traits (2015) Nat. Methods, 12, pp. 755-758
  • Lippert, C., Casale, F.P., Rakitsch, B., Stegle, O., (2014) LIMIX: Genetic Analysis of Multiple Traits, , http://biorxiv.org/content/early/2014/05/21/003905, Preprint at
  • Huang, W., Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines (2014) Genome Res., 24, pp. 1193-1208
  • Shim, H., Stephens, M., Wavelet-based genetic association analysis of functional phenotypes arising from high-throughput sequencing assays (2015) Ann. Appl. Stat., 9, pp. 665-686
  • Ohler, U., Liao, G.C., Niemann, H., Rubin, G.M., Computational analysis of core promoters in the Drosophila genome (2002) Genome Biol., 3
  • Dreos, R., Ambrosini, G., Bucher, P., Influence of Rotational Nucleosome Positioning on Transcription Start Site Selection in Animal Promoters (2016) PLoS Comput. Biol., 12, p. e1005144
  • Xi, L., Predicting nucleosome positioning using a duration Hidden Markov Model (2010) BMC Bioinformatics, 11, p. 346
  • Brown, C.D., Mangravite, L.M., Engelhardt, B.E., Integrative modeling of eQTLs and cis-regulatory elements suggests mechanisms underlying cell type specificity of eQTLs (2013) PLoS Genet., 9, p. e1003649
  • Arbiza, L., Genome-wide inference of natural selection on human transcription factor binding sites (2013) Nat. Genet., 45, pp. 723-729
  • Gronau, I., Arbiza, L., Mohammed, J., Siepel, A., Inference of natural selection from interspersed genomic elements based on polymorphism and divergence (2013) Mol. Biol. Evol., 30, pp. 1159-1171
  • Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., Siepel, A., Detection of nonneutral substitution rates on mammalian phylogenies (2010) Genome Res., 20, pp. 110-121
  • Spitz, F., Furlong, E.E., Transcription factors: From enhancer binding to developmental control (2012) Nat. Rev. Genet., 13, pp. 613-626
  • Metzger, B.P.H., Yuan, D.C., Gruber, J.D., Duveau, F., Wittkopp, P.J., Selection on noise constrains variation in a eukaryotic promoter (2015) Nature, 521, pp. 344-347
  • Stegle, O., Parts, L., Piipari, M., Winn, J., Durbin, R., Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses (2012) Nat. Protoc., 7, pp. 500-507
  • Storey, J.D., Tibshirani, R., Statistical significance for genomewide studies (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 9440-9445
  • Bailey, T.L., Johnson, J., Grant, C.E., Noble, W.S., The MEME Suite (2015) Nucleic Acids Res., 43, pp. W39-W49
  • Pietrokovski, S., Searching databases of conserved sequence regions by aligning protein multiple-alignments (1996) Nucleic Acids Res., 24, pp. 3836-3845
  • Down, T.A., Bergman, C.M., Su, J., Hubbard, T.J., Large-scale discovery of promoter motifs in Drosophila melanogaster (2007) PLoS Comput. Biol., 3, p. e7
  • Gaffney, D.J., Dissecting the regulatory architecture of gene expression QTLs (2012) Genome Biol., 13, p. R7
  • Thomas, S., Dynamic reprogramming of chromatin accessibility during Drosophila embryo development (2011) Genome Biol., 12, p. R43
  • Phipson, B., Maksimovic, J., Oshlack, A., MissMethyl: An R package for analyzing data from Illuminas HumanMethylation450 platform (2016) Bioinformatics, 32, pp. 286-288

Citas:

---------- APA ----------
Schor, I.E., Degner, J.F., Harnett, D., Cannavò, E., Casale, F.P., Shim, H., Garfield, D.A.,..., Furlong, E.E.M. (2017) . Promoter shape varies across populations and affects promoter evolution and expression noise. Nature Genetics, 49(4), 550-558.
http://dx.doi.org/10.1038/ng.3791
---------- CHICAGO ----------
Schor, I.E., Degner, J.F., Harnett, D., Cannavò, E., Casale, F.P., Shim, H., et al. "Promoter shape varies across populations and affects promoter evolution and expression noise" . Nature Genetics 49, no. 4 (2017) : 550-558.
http://dx.doi.org/10.1038/ng.3791
---------- MLA ----------
Schor, I.E., Degner, J.F., Harnett, D., Cannavò, E., Casale, F.P., Shim, H., et al. "Promoter shape varies across populations and affects promoter evolution and expression noise" . Nature Genetics, vol. 49, no. 4, 2017, pp. 550-558.
http://dx.doi.org/10.1038/ng.3791
---------- VANCOUVER ----------
Schor, I.E., Degner, J.F., Harnett, D., Cannavò, E., Casale, F.P., Shim, H., et al. Promoter shape varies across populations and affects promoter evolution and expression noise. Nat. Genet. 2017;49(4):550-558.
http://dx.doi.org/10.1038/ng.3791