Carbó, N.; Tarkowski, N.; Ipiña, E.P.; Dawson, S.P.; Aguilar, P.S."Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae" (2017) Molecular Biology of the Cell. 28(4):501-510
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Transient and highly regulated elevations of cytosolic Ca2+ control a variety of cellular processes. Bulk measurements using radioactive Ca2+ and the luminescent sensor aequorin have shown that in response to pheromone, budding yeast cells undergo a rise of cytosolic Ca2+ that is mediated by two import systems composed of the Mid1-Cch1-Ecm7 protein complex and the Fig1 protein. Although this response has been widely studied, there is no treatment of Ca2+ dynamics at the single-cell level. Here, using protein calcium indicators, we show that both vegetative and pheromone-treated yeast cells exhibit discrete and asynchronous Ca2+ bursts. Most bursts reach maximal amplitude in 1-10 s, range between 7 and 30 s, and decay in a way that fits a single-exponential model. In vegetative cells, bursts are scarce but preferentially occur when cells are transitioning G1 and S phases. On pheromone presence, Ca2+ burst occurrence increases dramatically, persisting during cell growth polarization. Pheromone concentration modulates burst frequency in a mechanism that depends on Mid1, Fig1, and a third, unidentified, import system. We also show that the calcineurin-responsive transcription factor Crz1 undergoes nuclear localization bursts during the pheromone response. © 2017 Carbó, Tarkowski, et al.


Documento: Artículo
Título:Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae
Autor:Carbó, N.; Tarkowski, N.; Ipiña, E.P.; Dawson, S.P.; Aguilar, P.S.
Filiación:Laboratorio de Biología Celular de Membranas, Institut Pasteur de Montevideo, Montevideo, 11400, Uruguay
Laboratorio de Biología Celular de Membranas, Instituto de Investigaciones Biotecnológicas, Universidad de San Martin, San Martin, 1650CPZ, Argentina
Departamento de Física, IFIBA, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:calcineurin; calcium; fig1 protein; fungal protein; mid1 protein; sex pheromone; transcription factor; transcription factor crz1; unclassified drug; calcium; calcium channel; Fig1 protein, S cerevisiae; membrane protein; MID1 protein, S cerevisiae; pheromone; Saccharomyces cerevisiae protein; sex pheromone; Article; cell cycle G1 phase; cell cycle S phase; cell growth; frequency modulation; fungus growth; hormone response; nonhuman; priority journal; Saccharomyces cerevisiae; yeast cell; cytoplasm; cytosol; metabolism; Saccharomyces cerevisiae; signal transduction; Calcium; Calcium Channels; Cytoplasm; Cytosol; Membrane Glycoproteins; Membrane Proteins; Pheromones; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sex Attractants; Signal Transduction
Página de inicio:501
Página de fin:510
Título revista:Molecular Biology of the Cell
Título revista abreviado:Mol. Biol. Cell
CAS:calcineurin, 137951-12-3; calcium, 7440-70-2, 14092-94-5; Calcium; Calcium Channels; Fig1 protein, S cerevisiae; Membrane Glycoproteins; Membrane Proteins; MID1 protein, S cerevisiae; Pheromones; Saccharomyces cerevisiae Proteins; Sex Attractants


  • Aguilar, P.S., Engel, A., Walter, P., The plasma membrane proteins prm1 and fig1 ascertain fidelity of membrane fusion during yeast mating (2007) Mol Biol Cell, 18, pp. 547-556
  • Alvaro, C.G., O'Donnell, A.F., Prosser, D.C., Augustine, A.A., Goldman, A., Brodsky, J.L., Cyert, M.S., Thorner, J., Specific alpha-arrestins negatively regulate saccharomyces cerevisiae pheromone response by down-modulating the G-protein-coupled receptor ste2 (2014) Mol Cell Bio, 34, pp. 2660-2681
  • Arsenault, H.E., Roy, J., Mapa, C.E., Cyert, M.S., Benanti, J.A., Hcm1 integrates signals from cdk1 and calcineurin to control cell proliferation (2015) Mol Biol Cell, 26, pp. 3570-3577
  • Batiza, A.F., Schulz, T., Masson, P.H., Yeast respond to hypotonic shock with a calcium pulse (1996) J Biol Chem, 271, pp. 23357-23362
  • Bonilla, M., Nastase, K.K., Cunningham, K.W., Essential role of calcineurin in response to endoplasmic reticulum stress (2002) EMBO J, 21, pp. 2343-2353
  • Brand, A., Shanks, S., Duncan, V.M., Yang, M., Mackenzie, K., Gow, N.A., Hyphal orientation of candida albicans is regulated by a calcium-dependent mechanism (2007) Curr Biol, 17, pp. 347-352
  • Brand, A.C., Morrison, E., Milne, S., Gonia, S., Gale, C.A., Gow, N.A., Cdc42 GTPase dynamics control directional growth responses (2014) Proc Natl Acad Sci USA, 111, pp. 811-816
  • Brizzio, V., Gammie, A.E., Nijbroek, G., Michaelis, S., Rose, M.D., Cell fusion during yeast mating requires high levels of a-factor mating pheromone (1996) J Cell Biol, 135, pp. 1727-1739
  • Cai, L., Dalal, C.K., Elowitz, M.B., Frequency-modulated nuclear localization bursts coordinate gene regulation (2008) Nature, 455, pp. 485-490
  • Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Jayaraman, V., Ultrasensitive fluorescent proteins for imaging neuronal activity (2013) Nature, 499, pp. 295-300
  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., Brent, R., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437, pp. 699-706
  • Cunningham, K.W., Acidic calcium stores of saccharomyces cerevisiae (2011) Cell Calcium, 50, pp. 129-138
  • Cyert, M.S., Kunisawa, R., Kaim, D., Thorner, J., Yeast has homologs (CNA1 and CNA2 gene products) of mammalian calcineurin, a calmodulin-regulated phosphoprotein phosphatase (1991) Proc Natl Acad Sci USA, 88, pp. 7376-7380
  • Cyert, M.S., Philpott, C.C., Regulation of cation balance in saccharomyces cerevisiae (2013) Genetics, 193, pp. 677-713
  • Denis, V., Cyert, M.S., Internal Ca(2+) release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue (2002) J Cell Biol, 156, pp. 29-34
  • Dolmetsch, R.E., Xu, K., Lewis, R.S., Calcium oscillations increase the efficiency and specificity of gene expression (1998) Nature, 392, pp. 933-936
  • Fischer, M., Schnell, N., Chattaway, J., Davies, P., Dixon, G., Sanders, D., The saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating (1997) FEBS Lett, 419, pp. 259-262
  • Goldman, A., Roy, J., Bodenmiller, B., Wanka, S., Landry, C.R., Aebersold, R., Cyert, M.S., The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity (2014) Mol Cell, 55, pp. 422-435
  • Groppi, S., Belotti, F., Brandao, R.L., Martegani, E., Tisi, R., Glucose-induced calcium influx in budding yeast involves a novel calcium transport system and can activate calcineurin (2011) Cell Calcium, 49, pp. 376-386
  • Hao, N., O'Shea, E.K., Signal-dependent dynamics of transcription factor translocation controls gene expression (2012) Nat Struct Mol Biol, 19, pp. 31-39
  • Iida, H., Nakamura, H., Ono, T., Okumura, M.S., Anraku, Y., MID1, a novel saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for ca2+ influx and mating (1994) Mol Cell Biol, 14, pp. 8259-8271
  • Iida, H., Yagawa, Y., Anraku, Y., Essential role for induced ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single saccharomyces cerevisiae cells with imaging of fura-2 (1990) J Biol Chem, 265, pp. 13391-13399
  • Jacquet, M., Renault, G., Lallet, S., De Mey, J., Goldbeter, A., Oscillatory nucleocytoplasmic shuttling of the general stress response transcriptional activators msn2 and msn4 in saccharomyces cerevisiae (2003) J Cell Biol, 161, pp. 497-505
  • Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Knop, M., A versatile toolbox for PCR-based tagging of yeast genes: New fluorescent proteins, more markers and promoter substitution cassettes (2004) Yeast, 21, pp. 947-962
  • Kanzaki, M., Nagasawa, M., Kojima, I., Sato, C., Naruse, K., Sokabe, M., Iida, H., Molecular identification of a eukaryotic, stretch-activated nonselective cation channel (1999) Science, 285, pp. 882-886
  • Kupzig, S., Walker, S.A., Cullen, P.J., The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of ras and the ERK/MAPK cascade (2005) Proc Natl Acad Sci USA, 102, pp. 7577-7582
  • Kvarnstrom, M., Logg, K., Diez, A., Bodvard, K., Kall, M., Image analysis algorithms for cell contour recognition in budding yeast (2008) Opt Express, 16, pp. 12943-12957
  • Lin, Y., Sohn, C.H., Dalal, C.K., Cai, L., Elowitz, M.B., Combinatorial gene regulation by modulation of relative pulse timing (2015) Nature, 527, pp. 54-58
  • Locke, E.G., Bonilla, M., Liang, L., Takita, Y., Cunningham, K.W., A homolog of voltage-gated Ca(2+) channels stimulated by depletion of secretory Ca(2+) in yeast (2000) Mol Cell Biol, 20, pp. 6686-6694
  • Ly, N., Cyert, M.S., Calcineurin, the Ca2+-dependent phosphatase, regulates Rga2, a Cdc42 GTPase activating protein, to modulate pheromone signaling (2017) Mol Biol Cell, 28. , (in press)
  • Martin, D.C., Kim, H., Mackin, N.A., Maldonado-Baez, L., Evangelista, C.C., Jr., Beaudry, V.G., Dudgeon, D.D., Cunningham, K.W., New regulators of a high affinity ca2+ influx system revealed through a genome-wide screen in yeast (2011) J Biol Chem, 286, pp. 10744-10754
  • Moore, S.A., Yeast cells recover from mating pheromone alpha factor-induced division arrest by desensitization in the absence of alpha factor destruction (1984) J Biol Chem, 259, pp. 1004-1010
  • Muller, E.M., Locke, E.G., Cunningham, K.W., Differential regulation of two Ca(2+) influx systems by pheromone signaling in saccharomyces cerevisiae (2001) Genetics, 159, pp. 1527-1538
  • Muller, E.M., Mackin, N.A., Erdman, S.E., Cunningham, K.W., Fig1p facilitates ca2+ influx and cell fusion during mating of saccharomyces cerevisiae (2003) J Biol Chem, 278, pp. 38461-38469
  • Munoz, A., Bertuzzi, M., Bettgenhaeuser, J., Iakobachvili, N., Bignell, E.M., Read, N.D., Different stress-induced calcium signatures are reported by aequorin-mediated calcium measurements in living cells of aspergillus fumigatus (2015) PLoS One, 10
  • Nakajima-Shimada, J., Iida, H., Tsuji, F.I., Anraku, Y., Monitoring of intracellular calcium in saccharomyces cerevisiae with an apoaequorin cDNA expression system (1991) Proc Natl Acad Sci USA, 88, pp. 6878-6882
  • Ohsumi, Y., Anraku, Y., Specific induction of ca2+ transport activity in MATa cells of saccharomyces cerevisiae by a mating pheromone, alpha factor (1985) J Biol Chem, 260, pp. 10482-10486
  • Paidhungat, M., Garrett, S., A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated ca2+ uptake and exacerbates the cdc1(Ts) growth defect (1997) Mol Cell Biol, 17, pp. 6339-6347
  • Petrenko, N., Chereji, R.V., McClean, M.N., Morozov, A.V., Broach, J.R., Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses (2013) Mol Biol Cell, 24, pp. 2045-2057
  • Sheff, M.A., Thorn, K.S., Optimized cassettes for fluorescent protein tagging in saccharomyces cerevisiae (2004) Yeast, 21, pp. 661-670
  • Stathopoulos, A.M., Cyert, M.S., Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast (1997) Genes Dev, 11, pp. 3432-3444
  • Taxis, C., Knop, M., System of centromeric, episomal, and integrative vectors based on drug resistance markers for saccharomyces cerevisiae (2006) Biotechniques, 40, pp. 73-78
  • Thurley, K., Tovey, S.C., Moenke, G., Prince, V.L., Meena, A., Thomas, A.P., Skupin, A., Falcke, M., Reliable encoding of stimulus intensities within random sequences of intracellular ca2+ spikes (2014) Sci Signal, 7, p. ra59
  • Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H., Petreanu, L., Schreiter, E.R., Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators (2009) Nat Methods, 6, pp. 875-881
  • Van Den Ent, F., Lowe, J., RF cloning: A restriction-free method for inserting target genes into plasmids (2006) J Biochem Biophys Methods, 67, pp. 67-74
  • Viladevall, L., Serrano, R., Ruiz, A., Domenech, G., Giraldo, J., Barcelo, A., Arino, J., Characterization of the calcium-mediated response to alkaline stress in saccharomyces cerevisiae (2004) J Biol Chem, 279, pp. 43614-43624
  • Yi, T.M., Kitano, H., Simon, M.I., A quantitative characterization of the yeast heterotrimeric G protein cycle (2003) Proc Natl Acad Sci USA, 100, pp. 10764-10769
  • Yoshimura, H., Tada, T., Iida, H., Subcellular localization and oligomeric structure of the yeast putative stretch-activated ca2+ channel component mid1 (2004) Exp Cell Res, 293, pp. 185-195
  • Zhang, N.N., Dudgeon, D.D., Paliwal, S., Levchenko, A., Grote, E., Cunningham, K.W., Multiple signaling pathways regulate yeast cell death during the response to mating pheromones (2006) Mol Biol Cell, 17, pp. 3409-3422


---------- APA ----------
Carbó, N., Tarkowski, N., Ipiña, E.P., Dawson, S.P. & Aguilar, P.S. (2017) . Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae. Molecular Biology of the Cell, 28(4), 501-510.
---------- CHICAGO ----------
Carbó, N., Tarkowski, N., Ipiña, E.P., Dawson, S.P., Aguilar, P.S. "Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae" . Molecular Biology of the Cell 28, no. 4 (2017) : 501-510.
---------- MLA ----------
Carbó, N., Tarkowski, N., Ipiña, E.P., Dawson, S.P., Aguilar, P.S. "Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae" . Molecular Biology of the Cell, vol. 28, no. 4, 2017, pp. 501-510.
---------- VANCOUVER ----------
Carbó, N., Tarkowski, N., Ipiña, E.P., Dawson, S.P., Aguilar, P.S. Sexual pheromone modulates the frequency of cytosolic Ca2+ bursts in Saccharomyces cerevisiae. Mol. Biol. Cell. 2017;28(4):501-510.