Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Glucosidase II (GII) sequentially removes the two innermost glucose residues from the glycan (Glc3Man9GlcNAc2) transferred to proteins. GII also participates in cycles involving the lectin/chaperones calnexin (CNX) and calreticulin (CRT) as it removes the single glucose unit added to folding intermediates and misfolded glycoproteins by the UDPGlc: glycoprotein glucosyltransferase (UGGT). GII is a heterodimer in which the á subunit (GIIα) bears the active site, and the β subunit (GIIβ) modulates GIIα activity through its C-terminal mannose 6-phosphate receptor homologous (MRH) domain. Here we report that, as already described in cell-free assays, in live Schizosaccharomyces pombe cells a decrease in the number of mannoses in the glycan results in decreased GII activity. Contrary to previously reported cell-free experiments, however, no such effect was observed in vivo for UGGT. We propose that endoplasmic reticulum α-mannosidase-mediated N-glycan demannosylation of misfolded/slow-folding glycoproteins may favor their interaction with the lectin/chaperone CNX present in S. pombe by prolonging the half-lives of the monoglucosylated glycans (S. pombe lacks CRT). Moreover, we show that even N-glycans bearing five mannoses may interact in vivo with the GIIβ MRH domain and that the N-terminal GIIβ G2B domain is involved in the GIIα-GIIβ interaction. Finally, we report that protists that transfer glycans with low mannose content to proteins have nevertheless conserved the possibility of displaying relatively long-lived monoglucosylated glycans by expressing GIIβ MRH domains with a higher specificity for glycans with high mannose content. © 2011 Stigliano et al.

Registro:

Documento: Artículo
Título:Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo
Autor:Stigliano, I.D.; Alculumbre, S.G.; Labriola, C.A.; Parodi, A.J.; D'Alessio, C.
Filiación:Laboratory of Glycobiology, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-CONICET, C1405BWE, Buenos Aires, Argentina
School of Sciences, University of Buenos Aires, C1428EHA, Buenos Aires, Argentina
Palabras clave:alpha glucosidase ab; alpha mannosidase; calnexin; calreticulin; glucosidase II alpha; glucosidase IIbeta; glycan; glycan derivative; glycoprotein; mannose; n glycan mannose; unclassified drug; amino terminal sequence; article; endoplasmic reticulum; enzyme activity; glycosylation; nonhuman; priority journal; protein expression; protein folding; protein interaction; Schizosaccharomyces pombe; alpha-Glucosidases; alpha-Mannosidase; Carbohydrate Sequence; Endoplasmic Reticulum; Gene Knockout Techniques; Glucosyltransferases; Glycoproteins; Half-Life; Hexosyltransferases; Mannose; Molecular Sequence Data; Polysaccharides; Protein Folding; Protein Interaction Domains and Motifs; Protein Stability; Protein Structure, Tertiary; Schizosaccharomyces; Protista; Schizosaccharomyces pombe
Año:2011
Volumen:22
Número:11
Página de inicio:1810
Página de fin:1823
DOI: http://dx.doi.org/10.1091/mbc.E11-01-0019
Título revista:Molecular Biology of the Cell
Título revista abreviado:Mol. Biol. Cell
ISSN:10591524
CODEN:MBCEE
CAS:alpha mannosidase, 9025-42-7; calnexin, 139873-08-8; mannose, 31103-86-3, 3458-28-4; 4-nitrophenyl-alpha-glucosidase, 3.2.1.-; Glucosyltransferases, 2.4.1.-; Glycoproteins; Hexosyltransferases, 2.4.1.-; Mannose, 31103-86-3; Polysaccharides; alpha-Glucosidases, 3.2.1.20; alpha-Mannosidase, 3.2.1.24; glycoprotein glycosyltransferase, 2.4.1.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10591524_v22_n11_p1810_Stigliano

Referencias:

  • Alfa, C., Fantes, P., Hyams, J., McLeod, M., Wabrik, E., (1993) Experiments with Fission Yeast: A Laboratory Manual, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
  • Arendt, C.W., Ostergaard, H.L., Two distinct domains of the β-subunit of glucosidase II interact with the catalytic α-subunit (2000) Glycobiology, 10 (5), pp. 487-492
  • Bahler, J., Wu, J.-Q., Longtine, M.S., Shah, N.G., McKenzie III, A., Steever, A.B., Wach, A., Pringle, J.R., Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe (1998) Yeast, 14 (10), pp. 943-951. , DOI 10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y
  • Cabral, C.M., Liu, Y., Sifers, R.N., Dissecting glycoprotein quality control in the secretory pathway (2001) Trends in Biochemical Sciences, 26 (10), pp. 619-624. , DOI 10.1016/S0968-0004(01)01942-9, PII S0968000401019429
  • Caramelo, J.J., Parodi, A.J., How sugars convey information on protein conformation in the endoplasmic reticulum (2007) Sem Cell Dev Biol, 18, pp. 10221-10225
  • Caramelo, J.J., Parodi, A.J., Getting in and out of calnexin and calreticulin cycles (2008) J Biol Chem, 283, pp. 10221-10225
  • D'Alessio, C., Caramelo, J.J., Parodi, A.J., UDP-Glc:glycoprotein glucosyltransferase- glucosidase II, the ying-yang of the ER quality control (2010) Semin Cell Dev Biol, 21, pp. 491-499
  • D'Alessio, C., Fernández, F., Trombetta, E.S., Parodi, A.J., Genetic evidence for the heterodimeric structure of glucosidase II. The effect of disrupting the subunit-encoding genes on glycoprotein folding (1999) J Biol Chem, 274, pp. 25899-25905
  • D'Alessio, C., Trombetta, E.S., Parodi, A.J., Nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe (2003) Journal of Biological Chemistry, 278 (25), pp. 22379-22387. , DOI 10.1074/jbc.M300892200
  • De La Canal, L., Parodi, A.J., Synthesis of dolichol derivatives in trypanosomatids. Characterization of enzymatic patterns (1987) J Biol Chem, 262, pp. 11128-11133
  • Fanchiotti, S., Fernández, F., D'Alessio, C., Parodi, A.J., The UDP-Glc: Glycoprotein glucosyltransferase is essential for Schizosaccharomyces pombe viability under conditions of extreme endoplasmic reticulum stress (1998) J Cell Biol, 143, pp. 625-635
  • Fernández, F., D'Alessio, C., Fanchiotti, S., Parodi, A.J., A misfolded protein conformation is not a sufficient condition for in vivo glucosylation by the UDP-Glc:glycoprotein glucosyltransferase (1998) EMBO J, 17, pp. 5877-5886
  • Fernandez, F.S., Trombetta, S.E., Hellman, U., Parodi, A.J., Purification to homogeneity of UDP-glucose:glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme from Saccharomyces cerevisiae (1994) Journal of Biological Chemistry, 269 (48), pp. 30701-30706
  • Frenkel, Z., Gregory, W., Kornfeld, S., Lederkremer, G.Z., Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2 (2003) J Biol Chem, 278, pp. 34119-34128
  • Grinna, L.S., Robbins, P.W., Substrate specificities of rat liver microsomal glucosidases which process glycoproteins (1980) J Biol Chem, 255, pp. 2255-2258
  • Hoffman, C.S., Winston, F., A ten-minute DNA preparation from yeast efficiently releases automomous plasmids for transformation of Escherichia coli (1987) Gene, 57 (2-3), pp. 267-272. , DOI 10.1016/0378-1119(87)90131-4
  • Hosokawa, N., Kamiya, Y., Kamiya, D., Kato, K., Nagata, K., Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans (2009) J Biol Chem, 284, pp. 17061-17068
  • Hu, D., Kamiya, Y., Totani, K., Kamiya, D., Kawasaki, N., Yamaguchi, D., Matsuo, N., Yamamoto, K., Sugar-binding activity of the MRH domain in the ERα-glucosidase GIIβ subunit is important for efficient glucose trimming (2009) Glycobiology, 19, pp. 1127-1135
  • Krawchuk, M.D., Wahls, W.P., High-efficiency gene targeting in Schizosaccharomyces pombe using a modular, PCR-based approach with long tracts of flanking homology (1999) Yeast, 15, pp. 1419-1427
  • Labriola, C.A., Cazzulo, J.J., Parodi, A.J., Retention of the glucose unit added by the UDP-Glc:glycoprotein glucosyltransferase delays exit of glycoproteins from the endoplasmic reticulum (1995) J Cell Biol, 130, pp. 771-779
  • Matsuyama, A., ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe (2006) Nat Biotechnol, 24, pp. 841-847. , Erratum in: Nat Biotechnol, 24, 1033
  • Moreno, S., Klar, A., Nurse, P., Molecular genetic analysis of fission yeast Schizosaccharomyces pombe (1991) Methods Enzymol, 194, pp. 795-823
  • Movsichoff, F., Castro, O.A., Parodi, A.J., Characterization of Schizosaccharomyces pombe ER α-mannosidase. A re-evaluation of the role of the enzyme on ER-associated degradation (2005) Mol Biol Cell, 16, pp. 4714-4724
  • Munro, S., The MRH domain suggests a shared ancestry for the mannose 6-phosphate receptors and other N-glycan-recognising proteins (2001) Curr Biol, 11, pp. 499-501
  • Parodi, A.J., N-glycosylation in trypanosomatid protozoa (1993) Glycobiology, 3, pp. 193-199
  • Parodi, A.J., Protein glucosylation and its role in protein folding (2000) Annu Rev Biochem, 69, pp. 69-95
  • Parodi, A.J., Martín-Barrientos, J., Engel, J.C., Glycoprotein assembly in Leishmania mexicana (1984) Biochem Biophys Res Commun, 118, pp. 1-7
  • Parodi, A.J., Mendelzon, D.H., Lederkremer, G.Z., Martín-Barrientos, J., Evidence that transient glucosylation of protein-linked Man 9GlcNAc2, Man8GlcNAc2, and Man 7GlcNAc2 occurs in rat liver and Phaseolus vulgaris cells (1984) J Biol Chem, 259, pp. 6351-6357
  • Pincus, D., Chevalier, M.W., Aragón, T., Van Anken, E., Vidal, S.E., El-Samad, H., Walter, P., BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response (2010) PLoS Biol, 8, pp. e1000415
  • Quan, E.M., Kamiya, Y., Kamiya, D., Denic, V., Weibezahn, J., Kato, K., Weissman, J.S., Defining the glycan destruction signal for endoplasmic reticulum-associated degradation (2009) Mol Cell, 32, pp. 870-877
  • Quinn, R.P., Mahoney, S.J., Wilkinson, B.M., Thornton, D.J., Stirling, C.J., A novel role for Gtb1p in glucose trimming of N-linked glycans (2009) Glycobiology, 19, pp. 1408-1416
  • Sambrook, J., Russell, D.W., (2001) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
  • Samuelson, J., Banerjee, S., Magnelli, P., Cui, J., Kelleher, D.J., Gilmore, R., Robbins, P.W., The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets glycosyltranferases (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (5), pp. 1548-1553. , DOI 10.1073/pnas.0409460102
  • Sato, M., Dhut, S., Toda, T., New drug-resistant cassettes for gene disruption and epitope tagging in Schizosaccharomyces pombe (2005) Yeast, 22 (7), pp. 583-591. , DOI 10.1002/yea.1233
  • Satoh, T., Chen, Y., Hu, D., Hanashima, S., Yamamoto, K., Yamaguchi, Y., Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation (2010) Mol Cell, 22, pp. 905-916
  • Schweden, J., Borgmann, C., Legler, G., Bause, E., Characterization of calf liver glucosidase I and its inhibition by basic sugar analogs (1986) Archives of Biochemistry and Biophysics, 248 (1), pp. 335-340
  • Sousa, M., Ferrero-García, M.A., Parodi, A.J., Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDPGlc: Glycoprotein glucosyltransferase (1992) Biochemistry, 31, pp. 97-105
  • Soussilane, P., D'Alessio, C., Paccalet, T., Fitchette, A.C., Parodi, A.J., Williamson, R., Plasson, C., Gomord, V., N-glycan trimming by glucosidase II is essential for Arabidopsis development (2009) Glycoconj J, 26, pp. 598-607
  • Spiro, R.G., Zhu, Q., Bhoyroo, V., Soling, H.-D., Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi (1996) Journal of Biological Chemistry, 271 (19), pp. 11588-11594. , DOI 10.1074/jbc.271.19.11588
  • Stigliano, I.D., Caramelo, J.J., Labriola, C.A., Parodi, A.J., D'Alessio, C., Glucosidase II β subunit modulates N-glycan trimming in fission yeasts and mammals (2009) Mol Biol Cell, 20, pp. 3974-3984
  • Totani, K., Ihara, Y., Matsuo, I., Ito, Y., Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose-type glycans (2006) Journal of Biological Chemistry, 281 (42), pp. 31502-31508. , http://www.jbc.org/cgi/reprint/281/42/31502, DOI 10.1074/jbc.M605457200
  • Totani, K., Ihara, Y., Matsuo, I., Ito, Y., Effects of macromolecular crowding on glycoprotein processing enzymes (2008) Journal of the American Chemical Society, 130 (6), pp. 2101-2107. , DOI 10.1021/ja077570k
  • Trombetta, S.E., Bosch, M., Parodi, A.J., Glucosylation of glycoproteins by mammalian, plant, fungal, and trypanosomatid protozoa microsomal membranes (1989) Biochemistry, 28 (20), pp. 8108-8116
  • Trombetta, E.S., Simons, J.F., Helenius, A., Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL- Containing subunit (1996) Journal of Biological Chemistry, 271 (44), pp. 27509-27516. , DOI 10.1074/jbc.271.44.27509
  • Trombetta, S.E., Parodi, A.J., Purification to apparent homogeneity and partial characterization of rat liver UDP-Glc:glycoprotein glucosyltransferase (1992) J Biol Chem, 267, pp. 9236-9240
  • Wilkinson, B.M., Purswani, J., Stirling, C.J., Yeast GTB1 encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum (2006) Journal of Biological Chemistry, 281 (10), pp. 6325-6333. , http://www.jbc.org/cgi/reprint/281/10/6325.pdf, DOI 10.1074/jbc.M510455200
  • Yagodnik, C., De La Canal, L., Parodi, A.J., Tetrahymena pyriformis cells are deficient in all mannose-P-dolichol- dependent mannosyltransferases but not in mannose-P-dolichol synthesis (1987) Biochemistry, 26, pp. 5937-5943
  • Zeng, Y.-C., Elbein, A.D., Purification to homogeneity and properties of plant glucosidase i (1998) Archives of Biochemistry and Biophysics, 355 (1), pp. 26-34. , DOI 10.1006/abbi.1998.0717

Citas:

---------- APA ----------
Stigliano, I.D., Alculumbre, S.G., Labriola, C.A., Parodi, A.J. & D'Alessio, C. (2011) . Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Molecular Biology of the Cell, 22(11), 1810-1823.
http://dx.doi.org/10.1091/mbc.E11-01-0019
---------- CHICAGO ----------
Stigliano, I.D., Alculumbre, S.G., Labriola, C.A., Parodi, A.J., D'Alessio, C. "Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo" . Molecular Biology of the Cell 22, no. 11 (2011) : 1810-1823.
http://dx.doi.org/10.1091/mbc.E11-01-0019
---------- MLA ----------
Stigliano, I.D., Alculumbre, S.G., Labriola, C.A., Parodi, A.J., D'Alessio, C. "Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo" . Molecular Biology of the Cell, vol. 22, no. 11, 2011, pp. 1810-1823.
http://dx.doi.org/10.1091/mbc.E11-01-0019
---------- VANCOUVER ----------
Stigliano, I.D., Alculumbre, S.G., Labriola, C.A., Parodi, A.J., D'Alessio, C. Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol. Biol. Cell. 2011;22(11):1810-1823.
http://dx.doi.org/10.1091/mbc.E11-01-0019