Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Living organisms are constantly exposed to environmental and genetic perturbations. Biological robustness enables these organisms to maintain their functional stability in the presence of external or internal changes. It has been proposed that microRNAs (miRNAs), small non-coding regulatory RNAs, contribute to robustness of gene regulatory networks. The hypoxic response is a major and well-characterized example of a cellular and systemic response to environmental stress that needs to be robust. miRNAs regulate the response to hypoxia, both at the level of the main transcription factor that mediates this response, the hypoxia-inducible factor (HIF), and at the level of one of the most important systemic outcomes of the response: angiogenesis. In this review, we will take the hypoxic response as a paradigm of miRNAs participating in circuits that provide robustness to biological responses. © 2012 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Robustness of the hypoxic response: Another job for miRNAs?
Autor:De Lella Ezcurra, A.L.; Bertolin, A.P.; Melani, M.; Wappner, P.
Filiación:Instituto Leloir, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Palabras clave:Angiogenesis; Hypoxia; Hypoxia-inducible factor; MicroRNAs; Robustness; hypoxia inducible factor 1; hypoxia inducible factor 1alpha; messenger RNA; microRNA; RNA induced silencing complex; RNA polymerase II; 3' untranslated region; angiogenesis; article; biology; development; gene expression; genetic variability; human; hypoxia; negative feedback; nonhuman; phenotype; physiology; positive feedback; priority journal; RNA structure; Animals; Anoxia; Humans; MicroRNAs; Neovascularization, Physiologic; Stress, Physiological; Transcription Factors
Año:2012
Volumen:241
Número:12
Página de inicio:1842
Página de fin:1848
DOI: http://dx.doi.org/10.1002/dvdy.23865
Título revista:Developmental Dynamics
Título revista abreviado:Dev. Dyn.
ISSN:10588388
CODEN:DEDYE
CAS:MicroRNAs; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10588388_v241_n12_p1842_DeLellaEzcurra

Referencias:

  • Alon, U., Network motifs: theory and experimental approaches (2007) Nat Rev Genet, 8, pp. 450-461
  • Alvarez-Saavedra, E., Horvitz, H.R., Many families of C. elegans microRNAs are not essential for development or viability (2010) Curr Biol, 20, pp. 367-373
  • Baek, D., Villen, J., Shin, C., Camargo, F.D., Gygi, S.P., Bartel, D.P., The impact of microRNAs on protein output (2008) Nature, 455, pp. 64-71
  • Barkai, N., Shilo, B.Z., Variability and robustness in biomolecular systems (2007) Mol Cell, 28, pp. 755-760
  • Becskei, A., Serrano, L., Engineering stability in gene networks by autoregulation (2000) Nature, 405, pp. 590-593
  • Bruick, R.K., Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor (2003) Genes Dev, 17, pp. 2614-2623
  • Bruning, U., Cerone, L., Neufeld, Z., Fitzpatrick, S.F., Cheong, A., Scholz, C.C., Simpson, D.A., Taylor, C.T., MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia (2011) Mol Cell Biol, 31, pp. 4087-4096
  • Bussolati, B., Moggio, A., Collino, F., Aghemo, G., D'Armento, G., Grange, C., Camussi, G., Hypoxia modulates the undifferentiated phenotype of human renal inner medullary CD133+ progenitors through Oct4/miR-145 balance (2012) Am J Physiol Renal Physiol, 302, pp. F116-F128
  • Ceradini, D.J., Kulkarni, A.R., Callaghan, M.J., Tepper, O.M., Bastidas, N., Kleinman, M.E., Capla, J.M., Gurtner, G.C., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1 (2004) Nat Med, 10, pp. 858-864
  • Cha, S.T., Chen, P.S., Johansson, G., Chu, C.Y., Wang, M.Y., Jeng, Y.M., Yu, S.L., Kuo, M.L., MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis (2010) Cancer Res, 70, pp. 2675-2685
  • Chan, S.Y., Loscalzo, J., MicroRNA-210: a unique and pleiotropic hypoxamir (2010) Cell Cycle, 9, pp. 1072-1083
  • Chung, A.S., Ferrara, N., Developmental and pathological angiogenesis (2011) Annu Rev Cell Dev Biol, 27, pp. 563-584
  • Djuranovic, S., Nahvi, A., Green, R., A parsimonious model for gene regulation by miRNAs (2011) Science, 331, pp. 550-553
  • Du, R., Sun, W., Xia, L., Zhao, A., Yu, Y., Zhao, L., Wang, H., Sun, S., Hypoxia-induced down-regulation of microRNA-34a promotes EMT by targeting the Notch signaling pathway in tubular epithelial cells (2012) PLoS One, 7, pp. e30771
  • Dunwoodie, S.L., The role of hypoxia in development of the mammalian embryo (2009) Dev Cell, 17, pp. 755-773
  • Ebert, M.S., Sharp, P.A., Roles for MicroRNAs in conferring robustness to biological processes (2012) Cell, 149, pp. 515-524
  • Fang, J., Song, X.W., Tian, J., Chen, H.Y., Li, D.F., Wang, J.F., Ren, A.J., Lin, L., Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes (2012) Apoptosis, 17, pp. 410-423
  • Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., Semenza, G.L., Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1 (1996) Mol Cell Biol, 16, pp. 4604-4613
  • Fraisl, P., Mazzone, M., Schmidt, T., Carmeliet, P., Regulation of angiogenesis by oxygen and metabolism (2009) Dev Cell, 16, pp. 167-179
  • Freeman, M., Feedback control of intercellular signalling in development (2000) Nature, 408, pp. 313-319
  • Gabay, L., Scholz, H., Golembo, M., Klaes, A., Shilo, B.Z., Klambt, C., EGF receptor signaling induces pointed P1 transcription and inactivates Yan protein in the Drosophila embryonic ventral ectoderm (1996) Development, 122, pp. 3355-3362
  • Gorospe, M., Tominaga, K., Wu, X., Fahling, M., Ivan, M., Post-transcriptional control of the hypoxic response by RNA-binding proteins and MicroRNAs (2011) Front Mol Neurosci, 4, p. 7
  • Graham, T.G., Tabei, S.M., Dinner, A.R., Rebay, I., Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives (2010) Development, 137, pp. 2265-2278
  • Guo, L., Qiu, Z., Wei, L., Yu, X., Gao, X., Jiang, S., Tian, H., Zhu, D., The MicroRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C (2012) Hypertension, 59, pp. 1006-1013
  • Hartman, J.L., Garvik, B., Hartwell, L., Principles for the buffering of genetic variation (2001) Science, 291, pp. 1001-1004
  • Herranz, H., Cohen, S.M., MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems (2010) Genes Dev, 24, pp. 1339-1344
  • Hewitson, K.S., McNeill, L.A., Riordan, M.V., Tian, Y.M., Bullock, A.N., Welford, R.W., Elkins, J.M., Schofield, C.J., Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family (2002) J Biol Chem, 277, pp. 26351-26355
  • Hornstein, E., Shomron, N., Canalization of development by microRNAs (2006) Nat Genet, 38 (SUPPL.), pp. S20-S24
  • Hua, Z., Lv, Q., Ye, W., Wong, C.K., Cai, G., Gu, D., Ji, Y., Zhang, Y., MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia (2006) PLoS One, 1, pp. e116
  • Huang, L.E., Gu, J., Schau, M., Bunn, H.F., Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway (1998) Proc Natl Acad Sci USA, 95, pp. 7987-7992
  • Huang, X., Le, Q.T., Giaccia, A.J., MiR-210: micromanager of the hypoxia pathway (2010) Trends Mol Med, 16, pp. 230-237
  • Inui, M., Martello, G., Piccolo, S., MicroRNA control of signal transduction (2010) Nat Rev Mol Cell Biol, 11, pp. 252-263
  • Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Ratcliffe, P.J., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation (2001) Science, 292, pp. 468-472
  • Jaubert, S., Mereau, A., Antoniewski, C., Tagu, D., MicroRNAs in Drosophila: the magic wand to enter the chamber of secrets? (2007) Biochimie, 89, pp. 1211-1220
  • Kallio, P.J., Okamoto, K., O'Brien, S., Carrero, P., Makino, Y., Tanaka, H., Poellinger, L., Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha (1998) EMBO J, 17, pp. 6573-6586
  • Kelly, B.D., Hackett, S.F., Hirota, K., Oshima, Y., Cai, Z., Berg-Dixon, S., Rowan, A., Semenza, G.L., Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1 (2003) Circ Res, 93, pp. 1074-1081
  • Kelly, T.J., Souza, A.L., Clish, C.B., Puigserver, P., A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like (2011) Mol Cell Biol, 31, pp. 2696-2706
  • Kim, V.N., MicroRNA biogenesis: coordinated cropping and dicing (2005) Nat Rev Mol Cell Biol, 6, pp. 376-385
  • Kitano, H., Biological robustness (2004) Nat Rev Genet, 5, pp. 826-837
  • Kulshreshtha, R., Davuluri, R.V., Calin, G.A., Ivan, M., A microRNA component of the hypoxic response (2008) Cell Death Differ, 15, pp. 667-671
  • Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., Bruick, R.K., FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor (2002) Genes Dev, 16, pp. 1466-1471
  • Lei, Z., Li, B., Yang, Z., Fang, H., Zhang, G.M., Feng, Z.H., Huang, B., Regulation of HIF-1alpha and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration (2009) PLoS One, 4, pp. e7629
  • Leung, A.K., Sharp, P.A., MicroRNA functions in stress responses (2010) Mol Cell, 40, pp. 205-215
  • Li, X., Carthew, R.W., A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye (2005) Cell, 123, pp. 1267-1277
  • Li, X., Cassidy, J.J., Reinke, C.A., Fischboeck, S., Carthew, R.W., A microRNA imparts robustness against environmental fluctuation during development (2009) Cell, 137, pp. 273-282
  • Lisy, K., Peet, D.J., Turn me on: regulating HIF transcriptional activity (2008) Cell Death Differ, 15, pp. 642-649
  • Loscalzo, J., The cellular response to hypoxia: tuning the system with microRNAs (2010) J Clin Invest, 120, pp. 3815-3817
  • Lu, X., Kang, Y., Hypoxia and hypoxia-inducible factors: master regulators of metastasis (2010) Clin Cancer Res, 16, pp. 5928-5935
  • Majmundar, A.J., Wong, W.J., Simon, M.C., Hypoxia-inducible factors and the response to hypoxic stress (2010) Mol Cell, 40, pp. 294-309
  • Mangan, S., Alon, U., Structure and function of the feed-forward loop network motif (2003) Proc Natl Acad Sci USA, 100, pp. 11980-11985
  • Martinez, N.J., Ow, M.C., Barrasa, M.I., Hammell, M., Sequerra, R., Doucette-Stamm, L., Roth, F.P., Walhout, A.J., A C. elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity (2008) Genes Dev, 22, pp. 2535-2549
  • Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J., Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism (1993) Proc Natl Acad Sci USA, 90, pp. 2423-2427
  • Maxwell, P.H., Wiesener, M.S., Chang, G.W., Clifford, S.C., Vaux, E.C., Cockman, M.E., Wykoff, C.C., Ratcliffe, P.J., The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis (1999) Nature, 399, pp. 271-275
  • Mendell, J.T., Olson, E.N., MicroRNAs in stress signaling and human disease (2012) Cell, 148, pp. 1172-1187
  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U., Network motifs: simple building blocks of complex networks (2002) Science, 298, pp. 824-827
  • Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A.B., McGonagle, S.M., Bartel, D.P., Horvitz, H.R., Most Caenorhabditis elegans microRNAs are individually not essential for development or viability (2007) PLoS Genet, 3, pp. e215
  • O'Neill, E.M., Rebay, I., Tjian, R., Rubin, G.M., The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway (1994) Cell, 78, pp. 137-147
  • Osella, M., Bosia, C., Cora, D., Caselle, M., The role of incoherent microRNA-mediated feedforward loops in noise buffering (2011) PLoS Comput Biol, 7, pp. e1001101
  • Pelaez, N., Carthew, R.W., Biological robustness and the role of MicroRNAs: a network perspective (2012) Curr Top Dev Biol, 99, pp. 237-255
  • Puissegur, M.P., Mazure, N.M., Bertero, T., Pradelli, L., Grosso, S., Robbe-Sermesant, K., Maurin, T., Mari, B., miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity (2011) Cell Death Differ, 18, pp. 465-478
  • Raser, J.M., O'Shea, E.K., Noise in gene expression: origins, consequences, and control (2005) Science, 309, pp. 2010-2013
  • Re, A., Cora, D., Taverna, D., Caselle, M., Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human (2009) Mol Biosyst, 5, pp. 854-867
  • Rebay, I., Rubin, G.M., Yan functions as a general inhibitor of differentiation and is negatively regulated by activation of the Ras1/MAPK pathway (1995) Cell, 81, pp. 857-866
  • Rey, S., Semenza, G.L., Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling (2010) Cardiovasc Res, 86, pp. 236-242
  • Rohrbaugh, M., Ramos, E., Nguyen, D., Price, M., Wen, Y., Lai, Z.C., Notch activation of yan expression is antagonized by RTK/pointed signaling in the Drosophila eye (2002) Curr Biol, 12, pp. 576-581
  • Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., Rajewsky, N., Widespread changes in protein synthesis induced by microRNAs (2008) Nature, 455, pp. 58-63
  • Semenza, G.L., Hypoxia-inducible factor 1 (HIF-1) pathway (2007) Sci STKE, 2007, pp. cm8
  • Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U., Network motifs in the transcriptional regulation network of Escherichia coli (2002) Nat Genet, 31, pp. 64-68
  • Shi, H., Hypoxia inducible factor 1 as a therapeutic target in ischemic stroke (2009) Curr Med Chem, 16, pp. 4593-4600
  • Silva-Rocha, R., de Lorenzo, V., Noise and robustness in prokaryotic regulatory networks (2010) Annu Rev Microbiol, 64, pp. 257-275
  • Simon, M.C., Keith, B., The role of oxygen availability in embryonic development and stem cell function (2008) Nat Rev Mol Cell Biol, 9, pp. 285-296
  • Staszel, T., Zapala, B., Polus, A., Sadakierska-Chudy, A., Kiec-Wilk, B., Stepien, E., Wybranska, I., Dembinska-Kiec, A., Role of microRNAs in endothelial cell pathophysiology (2011) Pol Arch Med Wewn, 121, pp. 361-366
  • Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., Takahashi, T., Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster (2008) Cancer Res, 68, pp. 5540-5545
  • Tsang, J., Zhu, J., van Oudenaarden, A., MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals (2007) Mol Cell, 26, pp. 753-767
  • van Rooij, E., Sutherland, L.B., Qi, X., Richardson, J.A., Hill, J., Olson, E.N., Control of stress-dependent cardiac growth and gene expression by a microRNA (2007) Science, 316, pp. 575-579
  • Voellenkle, C., Rooij, J., Guffanti, A., Brini, E., Fasanaro, P., Isaia, E., Croft, L., Martelli, F., Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs (2012) RNA, 18, pp. 472-484
  • Wang, G.L., Semenza, G.L., General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia (1993) Proc Natl Acad Sci USA, 90, pp. 4304-4308
  • Wang, G.L., Semenza, G.L., Purification and characterization of hypoxia-inducible factor 1 (1995) J Biol Chem, 270, pp. 1230-1237
  • Wang, G.L., Jiang, B.H., Rue, E.A., Semenza, G.L., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension (1995) Proc Natl Acad Sci USA, 92, pp. 5510-5514
  • Wang, S., Olson, E.N., AngiomiRs: key regulators of angiogenesis (2009) Curr Opin Genet Dev, 19, pp. 205-211
  • Wu, C.I., Shen, Y., Tang, T., Evolution under canalization and the dual roles of microRNAs: a hypothesis (2009) Genome Res, 19, pp. 734-743
  • Wu, F., Yang, Z., Li, G., Role of specific microRNAs for endothelial function and angiogenesis (2009) Biochem Biophys Res Commun, 386, pp. 549-553
  • Xu, C., Kauffmann, R.C., Zhang, J., Kladny, S., Carthew, R.W., Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye (2000) Cell, 103, pp. 87-97
  • Yamakuchi, M., Lotterman, C.D., Bao, C., Hruban, R.H., Karim, B., Mendell, J.T., Huso, D., Lowenstein, C.J., P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis (2010) Proc Natl Acad Sci USA, 107, pp. 6334-6339
  • Yeom, K.H., Lee, Y., Han, J., Suh, M.R., Kim, V.N., Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing (2006) Nucleic Acids Res, 34, pp. 4622-4629

Citas:

---------- APA ----------
De Lella Ezcurra, A.L., Bertolin, A.P., Melani, M. & Wappner, P. (2012) . Robustness of the hypoxic response: Another job for miRNAs?. Developmental Dynamics, 241(12), 1842-1848.
http://dx.doi.org/10.1002/dvdy.23865
---------- CHICAGO ----------
De Lella Ezcurra, A.L., Bertolin, A.P., Melani, M., Wappner, P. "Robustness of the hypoxic response: Another job for miRNAs?" . Developmental Dynamics 241, no. 12 (2012) : 1842-1848.
http://dx.doi.org/10.1002/dvdy.23865
---------- MLA ----------
De Lella Ezcurra, A.L., Bertolin, A.P., Melani, M., Wappner, P. "Robustness of the hypoxic response: Another job for miRNAs?" . Developmental Dynamics, vol. 241, no. 12, 2012, pp. 1842-1848.
http://dx.doi.org/10.1002/dvdy.23865
---------- VANCOUVER ----------
De Lella Ezcurra, A.L., Bertolin, A.P., Melani, M., Wappner, P. Robustness of the hypoxic response: Another job for miRNAs?. Dev. Dyn. 2012;241(12):1842-1848.
http://dx.doi.org/10.1002/dvdy.23865