Artículo

Zanella, C.; Campana, M.; Rizzi, B.; Melani, C.; Sanguinetti, G.; Bourgine, P.; Mikula, K.; Peyrieras, N.; Sarti, A. "Cells segmentation from 3-D confocal images of early zebrafish embryogenesis" (2010) IEEE Transactions on Image Processing. 19(3):770-781
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We designed a strategy for extracting the shapes of cell membranes and nuclei from time lapse confocal images taken throughout early zebrafish embryogenesis using a partial-differential-equation-based segmentation. This segmentation step is a prerequisite for an accurate quantitative analysis of cell morphodynamics during embryogenesis and it is the basis for an integrated understanding of biological processes. The segmentation of embryonic cells requires live zebrafish embryos fluorescently labeled to highlight sub-cellular structures and designing specific algorithms by adapting classical methods to image features. Our strategy includes the following steps: the signal-to-noise ratio is first improved by an edge-preserving filtering, then the cell shape is reconstructed applying a fully automated algorithm based on a generalized version of the Subjective Surfaces technique. Finally we present a procedure for the algorithm validation either from the accuracy and the robustness perspective. © 2010 IEEE.

Registro:

Documento: Artículo
Título:Cells segmentation from 3-D confocal images of early zebrafish embryogenesis
Autor:Zanella, C.; Campana, M.; Rizzi, B.; Melani, C.; Sanguinetti, G.; Bourgine, P.; Mikula, K.; Peyrieras, N.; Sarti, A.
Filiación:DEIS, Bologna University, 40136 Bologna, Italy
Facultad de Ciencias Exactas y Naturales, Buenos Aires University, C1428EGA Buenos Aires, Argentina
Instituto de Ingeniería Eléctrica, Universidad de la República, 11300 Montevideo, Uruguay
Centre de Recherche en Epistémologie Appliquée, CNRS, École Polytechnique, 75005 Paris, France
Department of Mathematics, Slovak University of Technology, 81368 Bratislava, Slovakia
CNRS-DEPSN, Institut de Neurobiologie Alfred Fessard, 91198 Gif sur Yvette, France
Palabras clave:Bioimaging; Confocal imaging; Image processing; Segmentation; Subjective surfaces; Algorithm validation; Automated algorithms; Bio-imaging; Biological process; Cell shapes; Classical methods; Confocal image; Confocal imaging; Edge preserving; Embryonic cells; Image features; Morphodynamics; Quantitative analysis; Sub-cellular; Zebrafish; Zebrafish embryos; Cell membranes; Cytology; Image processing; Imaging systems; Signal to noise ratio; Three dimensional; Edge detection; algorithm; animal; animal embryo; article; cell division; cell membrane; cell nucleus; cell shape; cytology; image processing; methodology; prenatal development; reproducibility; zebra fish; Algorithms; Animals; Cell Division; Cell Membrane; Cell Nucleus; Cell Shape; Embryo, Nonmammalian; Image Processing, Computer-Assisted; Reproducibility of Results; Zebrafish
Año:2010
Volumen:19
Número:3
Página de inicio:770
Página de fin:781
DOI: http://dx.doi.org/10.1109/TIP.2009.2033629
Título revista:IEEE Transactions on Image Processing
Título revista abreviado:IEEE Trans Image Process
ISSN:10577149
CODEN:IIPRE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10577149_v19_n3_p770_Zanella

Referencias:

  • Keller, P.J., Schmidt, A.D., Wittbrodt, J., Stelzer, E.H., Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy (2008) Science, 322, pp. 1065-1069
  • Lockett, S.J., Herman, B., Automatic detection of clustered, fluorescence- stained nuclei by digital image-based cytometry (1994) Cytometry, 17, pp. 1-12
  • Dow, A.I., Shafer, J.M., Kirkwood, J.M., Mascari, R.A., Waggoner, A.S., Automatic multiparameter florescence imaging for determining lymphocyte phenotype and activation status in Melanoma tissue sections (1996) Cytometry, 25, pp. 71-81
  • Malpica, N., Solorzano De C.Ortiz, Vaquero, J.J., Santos, A., Vallcorba, I., Garcia-Sagredo, J.M., Del Pozo, F., Applying watershed algorithms to the segmentation of clustered nuclei (1997) Cytometry, 28, pp. 289-297
  • Rigaut, J.P., Vassy, J., Herlin, P., Duigou, F., Masson, E., Briane, D., Foucrier, J., Mandard, A.M., Three-dimensional DNA image cytometry by confocal scanning laser microscopy in thick tissue blocks (1991) Cytometry, 12, pp. 511-524
  • Irinopoulou, T., Vassy, J., Beil, M., Nicopoulou, E., Encaoua, D., Rigaut, J.P., Three-dimensional DNA image cytometry by confocal scanning laser microscopy in thick tissue blocks of prostatic lesions (1997) Cytometry, 27, pp. 99-105
  • Rodenacker, K., Aubele, M., Hutzler, P., Umesh Adiga, P.S., Groping for quantitative digital 3-D image analysis: An approach to quantitative in situ hybridization in thick tissue sections of prostate carcinoma (1997) Anal. Cell. Pathol., 15, pp. 19-29
  • Lockett, S.J., Sudar, D., Thompson, C.T., Pinkel, D., Gray, J.W., Efficient, interactive, three-dimensional segmentation of cell nuclei in thick tissue sections (1998) Cytometry, 31, pp. 275-286
  • Solorzano De C.Ortiz, Garcia Rodriguez, E., Jones, A., Pinkel, D., Gray, J.W., Sudar, D., Lockett, S.J., Segmentation of confocal microscope images of cell nuclei in thick tissue section (1999) J. Microsc., 193, pp. 212-226
  • Sarti, A., Solorzano De C.Ortiz, Lockett, S., Malladi, R., A geometric model for 3-D confocal image analysis (2000) IEEE Trans. Biomed. Eng., 47, pp. 1600-1609
  • Padfield, D.R., Rittscher, J., Sebastian, T., Thomas, N., Roysam, B., Spatio-temporal cell cycle analysis using 3D level set segmentation of unstained nuclei in line scan confocal fluorescence images (2006) Proc. 3rd IEEE Int. Symp. Biomedical Imaging: Nano to Macro, pp. 1036-1039
  • Wang, X., He, W., Metaxas, D., Mathew, R., White, E., Cell segmentation and tracking using texture-adaptive snakes (2007) Proc. 4th IEEE Int. Symp. Biomedical Imaging: From Nano to Macro, pp. 101-104
  • Solorzano De C.Ortiz, Malladi, R., Leliévre, S.A., Lockett, S.J., Segmentation of nuclei and cells using membrane related protein markers (2001) J. Microsc., 201, pp. 404-415
  • Sarti, A., Malladi, R., Sethian, J.A., Subjective surfaces: A method for completing missing boundaries (2000) Proc. Nat. Acad. Sci. United States of America, 12, pp. 6258-6263
  • Sarti, A., Citti, G., Subjective surfaces and Riemannian mean curvature flow of graphs (2001) Acta Math. Univ. Comenianae, L20 (1), pp. 85-103
  • Sarti, A., Malladi, R., Sethian, J.A., Subjective surfaces: A geometric model for boundary completion (2002) Int. J. Comput. Vis., 46, pp. 201-221
  • Zanella, C., Rizzi, B., Melani, C., Campana, M., Bourgine, P., Mikula, K., Peyriéras, N., Sarti, A., Segmentation of cells from 3D confocal images of live Zebrafish embryo (2007) Proc. IEEE Eng. Med. Biol. Soc., pp. 6027-6030
  • Megason, S., Fraser, S., Digitizing life at the level of the cell: Highperformance laser-scanning microscopy and image analysis for in toto imaging of development (2003) Mech. Dev., 120, pp. 1407-1420
  • Dooley, K., Zon, L., Zebrafish: A model system for the study of human disease (2000) Curr. Opin. Genet. Dev., 10 (3), pp. 252-256
  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F., Stages of embryonic development of the zebrafish (1995) Dev. Dyn., 203, pp. 253-310
  • Kriva, Z., Mikula, K., Peyriéras, N., Rizzi, B., Sarti, A., 3D early embryogenesys image filtering by nonlinear partial differential equations Med. Image Anal., , submitted for publication
  • Rizzi, B., Campana, M., Zanella, C., Melani, C., Cunderlik, R., Kriva, Z., Bourgine, P., Sarti, A., 3D zebra fish embryo images filtering by nonlinear partial differential equations (2007) Proc. IEEE Eng. Med. Biol. Soc., pp. 6251-6254
  • Caselles, V., Kimmel, R., Sapiro, G., Geodesic active contours (1997) Int. J. Comput. Vis., 22, pp. 61-79
  • Malladi, R., Sethian, J.A., Vemuri, B.C., Shape modeling with front propagation: A level set approach (1995) IEEE Trans. Pattern Anal. Mach. Intell., 17, pp. 158-175
  • Perona, P., Malik, J., Scale-space and edge detection using anisotropic diffusion (1990) IEEE Trans. Pattern Anal. Mach. Intell., 12, pp. 629-639
  • Ballard, D., Generalizing the hough transform to detect arbitrary shapes (1981) Pattern Recognit, 13, pp. 111-122
  • Melani, C., Campana, M., Lombardot, B., Rizzi, B., Veronesi, F., Zanella, C., Bourgine, P., Sarti, A., Cells tracking in a live zebrafish embryo (2007) Proc. IEEE Eng. Med. Biol. Soc., pp. 1631-1634
  • Canny, J., A computational approach to edge detection (1986) IEEE Trans. Pattern Anal. Mach. Intell., PAMI-8 (6), pp. 679-698. , Jun
  • Evans, L.C., Spruck, J., Motion of level sets by mean curvature i (1991) J. Diff. Geom., 33, pp. 635-681
  • Osher, S., Sethian, J.A., Front propagating with curvature dependent speed: Algorithms based on Hamilton Jacobi formulation (1988) J. Comput. Phys., 79, pp. 12-49
  • Leveque, R.J., (2002) Finite Volume Methods for Hyperbolic Problems, , Cambridge MA: Cambridge Univ. Press
  • Mikula, K., Ramarosy, N., Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing (2001) Numer. Math., 89 (3), pp. 561-590
  • Corsaro, S., Mikula, K., Sarti, A., Sgallari, F., Semi-implicit co-volume method in 3D image segmentation (2006) SIAM J. Sci. Comput., 28 (6), pp. 2248-2265
  • Mikula, K., Sarti, A., Sgallari, F., Co-volume level set method in subjective surface based medical image segmentation (2005) Handbook of Medical Image Analysis: Segmentation and Registration Models, pp. 583-626. , J. Suri, Ed. et al. New York: Springer
  • Mikula, K., Sarti, A., Sgallari, F., Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation (2006) Comput. Vis. Sci., 9 (1), pp. 23-31
  • Caselles, V., Kimmel, R., Sapiro, G., Geodesic active contours (1997) Int. J. Comput. Vis., 22, pp. 61-79
  • Campana, M., Rizzi, B., Melani, C., Bourgine, P., Peyriéras, N., Sarti, A., A framework for 4D-biomedical image processing, visualization and analysis (2008) Proc. 3rd Int. Conf. Computer Graphics Theory and Applications, pp. 403-408
  • Zhang, J.W., Han, G.Q., Wo, Y., Image registration based on generalized and mean hausdorff distances (2005) Proc. 4th Int. Conf. Machine Learning and Cybernetics, pp. 5117-5121
  • Yushkewich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G., User guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability (2006) Neuroimage, 31, pp. 1116-1128. , http://www.itksnap.org, [Online]. Available

Citas:

---------- APA ----------
Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., Mikula, K.,..., Sarti, A. (2010) . Cells segmentation from 3-D confocal images of early zebrafish embryogenesis. IEEE Transactions on Image Processing, 19(3), 770-781.
http://dx.doi.org/10.1109/TIP.2009.2033629
---------- CHICAGO ----------
Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., et al. "Cells segmentation from 3-D confocal images of early zebrafish embryogenesis" . IEEE Transactions on Image Processing 19, no. 3 (2010) : 770-781.
http://dx.doi.org/10.1109/TIP.2009.2033629
---------- MLA ----------
Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., et al. "Cells segmentation from 3-D confocal images of early zebrafish embryogenesis" . IEEE Transactions on Image Processing, vol. 19, no. 3, 2010, pp. 770-781.
http://dx.doi.org/10.1109/TIP.2009.2033629
---------- VANCOUVER ----------
Zanella, C., Campana, M., Rizzi, B., Melani, C., Sanguinetti, G., Bourgine, P., et al. Cells segmentation from 3-D confocal images of early zebrafish embryogenesis. IEEE Trans Image Process. 2010;19(3):770-781.
http://dx.doi.org/10.1109/TIP.2009.2033629