Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Population genetic theory shows that asexual organisms may evolve into species, which behave as independent evolutionary units. As a result, they form genotypic clusters separated by deep gaps due to geographic isolation and/or divergent selection.Identification of several genetically divergent groups of weevils embodied in the nominal species Naupactus cervinus deserves further study, in order to test if these lineages are evolving independently. In the present paper we tested if the parthenogenetic weevil N. cervinus, native to South America and broadly distributed throughout the world, contains more than one evolutionary unit. For this purpose, we applied three different approaches, a multilocus phylogenetic analysis, the GMYC approach and the K/. θ method. We accomplished these analyses through a survey of mitochondrial (COI and COII genes) and nuclear (ITS1 sequence) genetic variation and morphometric analysis in a sample which included individuals from different locations within the native geographic range of N. cervinus. In addition, we compared the divergence accumulated in this species with that in another weevil of the same tribe (Naupactini) showing identical reproductive mode to see if similar levels of morphological variation matches similar levels of genetic divergence.We report the presence of two independent evolutionary units living in sympatry in forest areas. The incongruence between mitochondrial and nuclear datasets analyzed herein reflects incomplete lineage sorting of the nuclear marker and different evolutionary rates between genomes.Ecological divergence driven by natural selection (sympatry) or secondary contact after geographic isolation (allopatry) might explain the deep gaps in mitochondrial phylogenies. Instead, Wolbachia infection was ruled out as a causal factor for such differentiation. We conclude that N. cervinus is probably a species complex with at least two well differentiated lineages that would represent a cluster of species in statu nascendi. © 2013 Elsevier Inc.

Registro:

Documento: Artículo
Título:Speciation in the asexual realm: Is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi?
Autor:Rodriguero, M.S.; Lanteri, A.A.; Confalonieri, V.A.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aire, - IEGEBA (CONICET-UBA), Pabellón II, Ciudad Universitaria, Av. Intendente Güiraldes y Av. Costanera Norte s/n, 1428 Ciudad Autónoma de Buenos Aires, Argentina
División Entomología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina
Palabras clave:Asexuality; Curculionidae; Divergent selection; Geographical isolation; Species complex; Wolbachia; mitochondrial DNA; animal; Argentina; article; Brazil; classification; evolution; female; genetic variability; genetics; genotype; multilocus sequence typing; parthenogenesis; phenotype; phylogeny; physiology; weevil; Animals; Argentina; Biological Evolution; Brazil; DNA, Mitochondrial; Female; Genetic Variation; Genotype; Multilocus Sequence Typing; Parthenogenesis; Phenotype; Phylogeny; Weevils; Curculionidae; Entimini; Naupactus; Wolbachia
Año:2013
Volumen:68
Número:3
Página de inicio:644
Página de fin:656
DOI: http://dx.doi.org/10.1016/j.ympev.2013.04.011
Título revista:Molecular Phylogenetics and Evolution
Título revista abreviado:Mol. Phylogenet. Evol.
ISSN:10557903
CODEN:MPEVE
CAS:DNA, Mitochondrial
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10557903_v68_n3_p644_Rodriguero

Referencias:

  • Ab'Sáber, A.N., Espaços ocupados pela expansao dos climas secos na America do Sul, por ocasiao dos períodos glaciais quaternaários (1977) Paleoclimas, 3, pp. 1-19
  • Ahrens, M.E., Shoemaker, D., Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta (2005) BMC Evol. Biol., 5, p. 35
  • Avise, J.C., (2004), Molecular Markers, Natural History, and Evolution. Sinauer, Sunderland, MA; Avise, J.C., Neigel, J.E., Arnold, J., Demographic influences on mitochondrial DNA lineage survivorship in animal populations (1984) J. Mol. Evol., 20, pp. 99-105
  • Baldo, L., Bordenstein, S., Wernegreen, J., Werren, J.H., Widespread recombination throughout Wolbachia genomes (2006) Mol. Biol. Evol., 23, pp. 437-449
  • Baldo, L., Ayoub, N.A., Hayashi, C.Y., Russel, J.A., Stahlhut, J.K., Werren, J.H., Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity (2008) Mol. Ecol., 17, pp. 557-569
  • Ballard, J.W.O., Rand, D.M., The population biology of mitochondrial DNA and its phylogenetic implications (2005) Annu. Rev. Ecol. Syst., 36, pp. 621-642
  • Barraclough, T.G., Herniou, E., Why do species exist? Insights from sexuals and asexuals (2003) Zoology, 106, pp. 275-282
  • Barraclough, T.G., Birky, C.G., Burt, A., Diversification in sexual and asexual organisms (2003) Evolution, 57 (9), pp. 2166-2172
  • Benlarbi, M., Ready, P.D., Host-specific Wolbachia strains in widespread populations of Phlebotomus perniciosus and P. papatasi (Diptera: Psychodidae), and prospects for driving genes into these vectors of Leishmania (2003) Bull. Entomol. Res., 93, pp. 383-391
  • Birky, C.W., Barraclough, T.G., Asexual Speciation (2009) Lost Sex. The Evolutionary Biology of Parthenogenesis, pp. 201-216. , Springer, Amsterdam, P. Van Dijk, K. Martens, I. Schön (Eds.)
  • Birky, C.W., Wolf, C., Maughan, H., Herbertson, L., Henry, E., Speciation and selection without sex (2005) Hydrobiologia, 546, pp. 29-45
  • Birky, C.W., Adams, J., Gemmel, M., Perry, J., Using population genetic theory and DNA sequences for species detection and identification in asexual organisms (2010) PLoS ONE, 5, pp. e10609
  • Birky, C.W., Sex and evolution in eukaryotes (2009) Encyclopedia of Life Support Systems (EOLSS). Developed under the Auspices of the UNESCO, , EoLSS Publishers, Oxford, UK, A. Pires da Silva (Ed.)
  • Bouckaert, R.R., DensiTree: making sense of sets of phylogenetic trees (2010) Bioinformatics, 26 (10), pp. 1372-1373
  • Braig, H.R., Zhou, W., Dobson, S.L., O'Neill, S.L., Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis (1998) J. Bacteriol., 180 (9), pp. 2373-2378
  • Buchanan, L.L., (1939), 341, pp. 1-39. , The species of Pantomorus of America north of Mexico. USDA Misc. Publs; Buckley, T.R., Simon, C., Chambers, G.K., Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with Cenozoic environmental change (2001) Evolution, 55, pp. 1395-1407
  • Caccone, A., Sbordoni, V., Molecular biogeography of cave life: a study using mitochondrial DNA from Bathysciine beetles (2001) Evolution, 55, pp. 122-130
  • Chadwick, C., A review of Fuller's rose weevil Pantomorus cervinus (Boh.) (Col. Curculionidae) (1965) J. Aust. Entomol. Soc., 2, pp. 1-11
  • Cherry, T., Szalanski, A.L., Todd, T.C., Powers, T.O., The internal transcribed spacer region of Belonolaimus (Nemata: Belonolaimidae) (1997) J. Nematol., 29, pp. 23-29
  • de Vivo, M., Carmignotto, A.P., Holocene vegetation change and the mammal faunas of South America and Africa (2004) J. Biogeogr., 31, pp. 943-957
  • Degnan, J.H., Rosenberg, N.A., Discordance of species trees with their most likely gene trees (2006) PLoS Genet., 3, pp. e68
  • Dincǎ, V., Lukhtanov, V.A., Talavera, G., Vila, R., Unexpected layers of cryptic diversity in wood white leptidea butterflies (2011) Nat. Commun., 2, p. 324
  • Dobzhansky, T., Spassky, B., Drosophila paulistorum, a cluster of species in statu nascendi (1959) Proc. Natl. Acad. Sci. USA, 45 (3), pp. 419-428
  • Drummond, A.J., Rambaut, A., BEAST: Bayesian Evolutionary Analysis Sampling trees (2007) BMC Evol. Biol., 7, p. 214
  • Essestyn, J.A., Evans, B.J., Sedlock, J.L., Anwarali Khan, F.A., Heaney, L.R., Single-locus species delimitation: a test of the mixed Yule-coalescent model, with an empirical application to Philippine round-leaf bats (2012) Proc. Roy. Soc. B, 279 (1743), pp. 3678-3686
  • Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap (1985) Evolution, 39, pp. 783-791
  • Felsenstein, J., (2005), PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle. (Accessed 16.09.11); Felsenstein, J., Churchill, G.A., A hidden Markov model approach to variation among sites in rates of evolution (1996) Mol. Biol. Evol., 13, pp. 93-104
  • Fontaneto, D., Herniou, E.A., Barraclough, T.G., Ricci, C., Melone, G., On the reality and recognisability of asexual organisms: morphological analysis of the masticatory apparatus of bdelloid rotifers (2007) Zool. Scripta, 36 (4), pp. 361-370
  • Fontaneto, D., Herniou, E.A., Boschetti, C., Caprioli, M., Melone, G., Ricci, C., Barraclough, T.G., Independently evolving species in asexual bdelloid rotifers (2007) PLoS Biol., 5 (4), pp. e87
  • Fontaneto, D., Barraclough, T.G., Chen, K., Ricci, C., Herniou, E.A., Molecular evidence for broad-scale distributions in bdelloid rotifers: everything is not everywhere but most things are very widespread (2008) Mol. Ecol., 17 (13), pp. 3136-3146
  • Fontaneto, D., Tang, C.Q., Obertegger, U., Leasi, F., Barraclough, T.G., Different diversification rates between sexual and asexual organisms (2012) Evol. Biol., 39 (2), pp. 262-270
  • Frati, F., Negri, I., Fanciulli, P.P., Pellecchia, M., De Paola, V., Scali, V., Dalla, R., High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae) (2004) Pedobiologia, 48 (5-6), pp. 461-468
  • Goloboff, P.A., (1999), http://www.cladistics.com/aboutNona.htm, NONA (NO NAME) version 2.0. (Accessed 16.09.11); Guzmán, N.V., Lanteri, A.A., Confalonieri, V.A., Colonization ability of two invasive weevils with different reproductive modes (2012) Evol. Ecol., 26 (6), pp. 1371-1390
  • Haffer, J., General aspects of the refuge theory. Part 1: The refuge theory (1982) Biological diversification in the Tropics, pp. 6-24. , Columbia University, New York, NY, G.T. Prance (Ed.)
  • Haine, E.R., Martin, J., Cook, J.M., Deep mtDNA divergences indicate cryptic species in a fig-pollinating wasp (2006) BMC Evol. Biol., 6, p. 83
  • Heethoff, M., Domes, K., Laumann, M., Maraun, M., Norton, R.A., Scheu, S., High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida) (2007) J. Evol. Biol., 20, pp. 392-402
  • Heled, J., Drummond, A.J., Bayesian inference of population size history from multiple loci (2008) BMC Evol. Biol., 8 (1), p. 289
  • Hey, J., The mind of the species problem (2001) Trends Ecol. Evol., 16, pp. 326-329
  • Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogeny (2001) Bioinformatics, 17, pp. 754-755
  • Hurst, G.D.D., Jiggins, F.M., Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: the effects of inherited symbionts (2005) Proc. Roy. Soc. London B, 272, pp. 1525-1534
  • Husemann, M., Guzmán, N.V., Danley, P., Cigliano, M.M., Confalonieri, V.A., Biogeography of Trimerotropis pallidipennis (Acrididae: Oedipodinae): deep divergence across the Americas (2013) J. Biogeogr., 40, pp. 261-273
  • Johnson, M.T.J., Fitzjohn, R.G., Smith, S.D., Rausher, M.D., Otto, S.P., Loss of sexual recombination and segregation is associated with increased diversification in evening primroses (2011) Evolution, 65 (11), pp. 3230-3240
  • Kubatko, L., Degnan, J., Inconsistency of phylogenetic estimates from concatenated data under coalescence (2007) Syst. Biol., 56 (1), pp. 17-24
  • Laclau, P., La conservación de los recursos naturales y el hombre en la selva paranaense (1994) Bol. Técnico Fund. Vida Silv. Arg., 20, pp. 1-139
  • Lanteri, A.A., Revisión sistemática del género Eurymetopus Schoenherr (Coleoptera: Curculionidae) mediante la aplicación de técnicas numéricas (1984) Rev. Soc. Entomol. Argent., 43 (1-4), pp. 247-281
  • Lanteri, A.A., Systematics, cladistics and biogeography of a new weevil genus Galapaganus (Coleoptera: Curculionidae) from the Galápagos Islands, and coasts of Ecuador and Perú (1992) Trans. Am. Entomol. Soc., 118 (2), pp. 227-267
  • Lanteri, A.A., La partenogénesis geográfica y la sinonimia de Asynonychus cervinus (Boheman) y A. godmanni Crotch Coleoptera: Curculionidae (1993) Rev. Soc. Ent. Argentina, 52, p. 100
  • Lanteri, A.A., Díaz, N.B., Systematic study and cladistic analysis of the genus Aramigus Horn (Coleoptera: Curculionidae) (1994) Trans. Am. Entomol. Soc., 120, pp. 113-144
  • Lanteri, A.A., Normark, B.B., Parthenogenesis in tribe Naupactini (Coleoptera: Curculionidae) (1995) Ann. Ent. Soc. America, 88, pp. 722-731
  • Lanteri, A.A., Díaz, N.B., Loiácono, M.S., Coscarón, M.C., Aplicación de técnicas numéricas al estudio sistemático del grupo de Asynonychus durius (Germar) (Coleoptera: Curculionidae) (1987) Entomol. Arb. Mus. Frey, 35 (36), pp. 171-198
  • Lanteri, A.A., Díaz, N.B., Ortiz Jaureguizar, E., Análisis multivariado y congruencia taxonómica en la delimitación de los géneros Asynonychus Crotch y Aramigus Horn (Coleoptera: Curculionidae) (1989) Rev. Asoc. Cs. Nat. Litoral, 20, pp. 41-56
  • Leaché, A.D., Fujita, M.K., Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus) (2010) Proc. Roy. Soc. London B, 277, pp. 3071-3077
  • Ledru, M.-P., Rousseau, D.-D., Cruz, F.W., Riccomini, C., Karmann, I., Martin, L., Paleoclimate changes during the last 100,000yr from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison (2005) Quat. Res., 64, pp. 444-450
  • Librado, P., Rozas, J., DnaSP v5: a software for comprehensive analysis of DNA polymorphism data (2009) Bioinformatics, 25, pp. 1451-1452
  • Lohse, K., Can mtDNA barcodes be used to delimit species? A response to Pons et al. (2006) (2009) Syst. Biol., 58, pp. 439-442
  • Lokki, J., Saura, A., Polyploidy in insect evolution (1980) Polyploidy: Biological Relevance, pp. 277-312. , Plenum Press, New York, NY, W.H. Lewis (Ed.)
  • Maraun, M., Heethoff, M., Scheu, S., Norton, R.A., Weigmann, G., Thomas, R.H., Radiation in sexual and parthenogenetic oribatid mites (Oribatida, Acari) as indicated by genetic divergence of closely related species (2003) Exp. Appl. Acarol., 29 (3-4), pp. 265-277
  • Maraun, M., Heethoff, M., Schneider, K., Scheu, S., Weigmann, G., Cianciolo, J., Thomas, R.H., Norton, R.A., Molecular phylogeny of oribatid mites (Oribatida, Acari): evidence for multiple radiations of parthenogenetic lineages (2004) Exp. Appl. Acarol., 33 (3), pp. 183-201
  • Mark Welch, D.B., Meselson, M., Rates of nucleotide substitution in sexual and anciently asexual rotifers (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 6720-6724
  • Mark Welch, D.B., Cummings, M.P., Hillis, D.M., Meselson, M., Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 1622-1625
  • Martens, K., Rossetti, G., Butlin, R.K., Schön, I., Molecular and morphological phylogeny of the ancient asexual Darwinulidae (Crustacea, Ostracoda) (2005) Hydrobiologia, 538 (1-3), pp. 153-165
  • Monaghan, M.T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D.J.G., Lees, D.C., Vogler, A.P., Accelerated species inventory on Madagascar using coalescent-based models of species delineation (2009) Syst. Biol., 58, pp. 298-311
  • Narita, S., Nomura, M., Kato, Y., Fukatsu, T., Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications (2006) Mol. Ecol., 15, pp. 1095-1108
  • Nei, M., (1987) Molecular Evolutionary Genetics, , Columbia University Press, New York, NY
  • Nei, M., Li, W.H., Mathematical model for studying genetic variation in terms of restriction endonucleases (1979) Proc. Natl. Acad. Sci., 76, pp. 5269-5273
  • Nixon, K.C., (2002), http://www.cladistics.com/aboutWinc.htm, WinClada. Version 1.00.08. (Accessed 16.09.11); Normark, B.B., (1994), Phylogeny and Evolution of Parthenogenesis in the Aramigus tessellatus Complex (Coleoptera: Curculionidae). PhD Dissertation. Cornell University, Ithaca, USA; Normark, B.B., Phylogeny and evolution of parthenogenetic weevils of the Aramigus tessellatus species complex (Coleoptera: Curculionidae: Naupactini): evidence from mitochondrial DNA sequences (1996) Evolution, 50, pp. 734-745
  • Normark, B.B., The evolution of alternative genetic systems in insects (2003) Annu. Rev. Entomol., 48, pp. 397-423
  • Normark, B.B., Lanteri, A.A., Aramigus uruguayensis (Coleoptera: Curculionidae), a new species based on mitochondrial DNA and morphological characters (1996) Ent. News, 107, pp. 311-316
  • Normark, B.B., Lanteri, A.A., Incongruence between morphological and mitochondrial-DNA characters suggests hybrid origins of parthenogenetic weevil lineages (genus Aramigus) (1998) Syst. Biol., 47, pp. 459-478
  • Nylander, J.A.A., (2004), MrModeltest v. 2. Program distributed by the author, 2004. Evolutionary Biology Center, Uppsala University 2009. (Accesed 16.09.11); Nylander, J.A.A., Wilgenbush, J.C., Warren, D.L., Swofford, D.L., AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics (2008) Bioinformatics, 24, pp. 581-583
  • Parvizi, P., Benlarbi, M., Ready, P.D., Mitochondrial and Wolbachia markers for the sandfly Phlebotomus papatasi: little population differentiation between peridomestic sites and gerbil burrows in Isfahan province (2003) Iran. Med. Vet. Entomol., 17, pp. 351-362
  • Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Vogler, A.P., Sequence based species delimitation for the DNA taxonomy of undescribed insects (2006) Syst. Biol., 55, pp. 595-609
  • Posada, D., Buckley, T.R., Model selection and model averaging in phylogenetics: advantages of Akaike information Criterion and Bayesian approaches over likelihood ratio tests (2004) Syst. Biol., 53 (5), pp. 793-808
  • Rambaut, A., (2009), http://tree.bio.ed.ac.uk/software/, FigTree v. 1.3.1. Computer program and documentation distributed by the author. (Accesed on 16.09.11; Rambaut, A., Drummond, A.J., (2007), http://beast.bio.ed.ac.uk/Tracer, Tracer. Released 1.4. 2007 (Accesed 16.09.11); Reiss, R.A., Schwert, D.P., Ashworth, A.C., Field preservation of Coleoptera for molecular genetics analyses (1995) Environ. Entomol., 24, pp. 716-719
  • Rieppel, O., Species monophyly (2010) J. Zool. Syst. Evol. Res., 48 (1), pp. 1-8
  • Ringuelet, R.A., Panorama zoogeográfico de la provincia de Buenos Aires (1955) Notas Mus. La Plata 18(Zool. 156), pp. 1-45
  • Ringuelet, R.A., Rasgos fundamentales de la Zoogeografía de la Argentina (1961) Physis, 22 (63), pp. 151-170
  • Rodriguero, M.S., (2009), Origen y consecuencias de la reproducción asexual en una especie de gorgojo de importancia agronómica. PhD Dissertation. University of Buenos Aires, Buenos Aires, Argentina; Rodriguero, M.S., Confalonieri, V.A., Guedes, J.V.C., Lanteri, A.A., Wolbachia infection in the tribe Naupactini (Coleoptera: Curculionidae): association between thelytokous parthenogenesis and infection status (2010) Insect Mol. Biol., 19, pp. 631-640
  • Rodriguero, M.S., Lanteri, A.A., Confalonieri, V.A., Mito-nuclear genetic comparison in a Wolbachia infected weevil: insights of reproductive mode, infection age and evolutionary forces shaping genetic variation (2010) BMC Evol. Biol., 10, p. 340
  • Ronquist, F., Huelsenbeck, J.P., MRBAYES v. 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574
  • Rosenberg, N.A., The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly, and polyphyly in a coalescent model (2003) Evolution, 57 (7), pp. 1465-1477
  • Rundle, H.D., Nosil, P., Ecological speciation (2005) Ecol. Lett., 8, pp. 336-352
  • Saia, S.E.M.G., Pessenda, L.C.R., Gouveia, S.E.M., Aravena, R., Bendassolli, J.A., Last glacial maximum (LGM) vegetation changes in the Atlantic Forest, southeastern Brazil (2008) Quat. Int., 184, pp. 195-201
  • Scataglini, M.A., Lanteri, A.A., Confalonieri, V.A., Phylogeny of the Pantomorus-Naupactus complex based on morphological and molecular data (Coleoptera: Curculionidae) (2005) Cladistics, 21, pp. 131-142
  • Schön, I., Rossetti, G., Martens, K., Darwinulid Ostracods: Ancient Asexual Scandals or Scandalous Gossip? (2009) Lost Sex. The Evolutionary Biology of Parthenogenesis, pp. 240-271. , Springer, Amsterdam, P. Van Dijk, K. Martens, I. Schön (Eds.)
  • Schön, I., Martens, K., Halse, S., Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae): little variability down under (2010) Hydrobiología, 641 (1), pp. 59-70
  • Schön, I., Pinto, R.L., Halse, S., Smith, A.J., Martens, K., Birky, C.W., Cryptic species in putative ancient asexual darwinulids (Crustacea, Ostracoda) (2012) PLoS ONE, 7 (7), pp. e39844
  • Schwander, T., Henry, L., Crespi, B.J., Molecular evidence for ancient asexuality in Timema stick insects (2011) Curr. Biol., 21 (13), pp. 1129-1134
  • Sennblad, B., Schreil, E., Berglund-Sonnhammer, A.-C., Lagergren, J., Arvestad, L., PRIMETV: a viewer for reconciled trees (2007) BMC Bioinform., 8, p. 148
  • Sequeira, A.S., Lanteri, A.A., Roque Albelo, L.R., Bhattacharya, S., Sijapati, M., Colonization history, ecological shifts and diversification in the evolution of endemic Galápagos weevils (2008) Mol. Ecol., 17 (4), pp. 1089-1107
  • Sequeira, A.S., Sijapati, M., Lanteri, A.A., Roque Albelo, L., Nuclear and mitochondrial sequences confirm complex colonization patterns and clear species boundaries for flightless weevils in the Galápagos archipelago (2008) Philos. T. Roy. Soc. London B, 363, pp. 3439-3451
  • Short, R.V., Balaban, E., (1994) The differences between the sexes, , Cambridge University Press, Cambridge, MA
  • Simpson Vuilleumier, B., Pleistocene changes in the fauna and flora of South America (1971) Science, 173, pp. 529-554
  • Smith, S.G., Virkki, N., Coleoptera (1978) Insecta 5, 3, pp. 236-290. , Gebrüder Borntraeger, Berlin-Stuttgart, Germany, B. John (Ed.) Animal Cytogenetics
  • Sun, X.-J., Xiao, J.-H., Cook, J.M., Feng, G., Huang, D.-W., Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity (2011) BMC Evol. Biol., 11, p. 86
  • Suomalainen, E., Significance of parthenogenesis in the evolution of insects (1962) Annu. Rev. Entomol., 7, pp. 349-366
  • Suomalainen, E., Saura, A., Lokki, J., Evolution of parthenogenetic insects (1976) Evol. Biol., 9, pp. 209-257
  • Suomalainen, E., Saura, A., Lokki, J., (1987) Cytology and evolution in parthenogenesis, , CRC Press, Boca Ratón, FL
  • Szalanski, A.L., Owen, C.B., Genetic variation of the southern corn rootworm, Diabrotica undecimpunctata howardi (Coleoptera, Chrisomalidae) (2003) Fla. Entomol., 86, pp. 329-333
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739
  • Templeton, A., The meaning of species and speciation: a population genetics approach (1989) Speciation and its Consequences, pp. 3-27. , Sinauer Associates, Sunderland, MA, D. Otte, J. Endler (Eds.)
  • Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice (1994) Nucl. Acids Res., 22 (22), pp. 4673-4680
  • Vrain, T.C., Wakarchuk, D.C., Levesque, A.C., Hamilton, R.I., Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group (1992) Fund. Appl. Nematol., 15, pp. 563-573
  • Wilgenbusch, J.C., Warren, D.L., Swofford, D.L., (2004), http://ceb.csit.fsu.edu/awty, AWTY: a system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference

Citas:

---------- APA ----------
Rodriguero, M.S., Lanteri, A.A. & Confalonieri, V.A. (2013) . Speciation in the asexual realm: Is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi?. Molecular Phylogenetics and Evolution, 68(3), 644-656.
http://dx.doi.org/10.1016/j.ympev.2013.04.011
---------- CHICAGO ----------
Rodriguero, M.S., Lanteri, A.A., Confalonieri, V.A. "Speciation in the asexual realm: Is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi?" . Molecular Phylogenetics and Evolution 68, no. 3 (2013) : 644-656.
http://dx.doi.org/10.1016/j.ympev.2013.04.011
---------- MLA ----------
Rodriguero, M.S., Lanteri, A.A., Confalonieri, V.A. "Speciation in the asexual realm: Is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi?" . Molecular Phylogenetics and Evolution, vol. 68, no. 3, 2013, pp. 644-656.
http://dx.doi.org/10.1016/j.ympev.2013.04.011
---------- VANCOUVER ----------
Rodriguero, M.S., Lanteri, A.A., Confalonieri, V.A. Speciation in the asexual realm: Is the parthenogenetic weevil Naupactus cervinus a complex of species in statu nascendi?. Mol. Phylogenet. Evol. 2013;68(3):644-656.
http://dx.doi.org/10.1016/j.ympev.2013.04.011