Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Birdsong, a rich and complex behavior, is a stellar model to understand a variety of biological problems, from motor control to learning. It also enables us to study how behavior emerges when a nervous system, a biomechanical device and the environment interact. In this review, I will show that many questions in the field can benefit from the approach of nonlinear dynamics, and how birdsong can inspire new directions for research in dynamics.

Registro:

Documento: Artículo
Título:Nonlinear dynamics in the study of birdsong
Autor:Mindlin, G.B.
Filiación:Departamento de Física, FCEyN, Universidad de Buenos Aires IFIBA, CONICET, Argentina
Palabras clave:anatomy and histology; animal; animal structures; biological model; bird; nerve cell; nonlinear system; physiology; vocalization; Animal Structures; Animals; Birds; Models, Biological; Neurons; Nonlinear Dynamics; Vocalization, Animal
Año:2017
Volumen:27
Número:9
DOI: http://dx.doi.org/10.1063/1.4986932
Título revista:Chaos
Título revista abreviado:Chaos
ISSN:10541500
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10541500_v27_n9_p_Mindlin

Referencias:

  • (2008) Neuroscience of Birdsong, pp. 5-31. , edited by H. P Zeigler and P. Marler (Cambridge University Press, Cambridge)
  • Marler, P., Birdsong and speech development: Could there be parallels? There may be basic rules governing vocal learning to which many species conform, including man (1970) Am. Sci., 58 (6), pp. 669-673
  • Chiel, H.J., Beer, R.D., The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment (1997) Trends Neurosci., 20 (12), pp. 553-557
  • Suthers, R.A., Goller, F., Pytte, C., The neuromuscular control of birdsong (1999) Philos. Trans. R. Soc. B: Biol. Sci., 354 (1385), p. 927
  • Schmidt, M.F., Goller, F., Breathtaking songs: Coordinating the neural circuits for breathing and singing (2016) Physiology, 31 (6), pp. 442-451
  • Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V., Neural population dynamics during reaching (2012) Nature, 487 (7405), pp. 51-56
  • Warner, R.W., The anatomy of the syrinx in passerine birds (1972) J. Zool., 168 (3), pp. 381-393
  • Riede, T., Goller, F., Functional morphology of the sound generating labia in the syrinx of two songbird species (2010) J. Anat., 216 (1), pp. 23-36
  • Howe, M.S., (2003) Theory of Vortex Sound, 33. , (Cambridge University Press)
  • Goller, F., Suthers, R.A., Role of syringeal muscles in gating airflow and sound production in singing brown thrashers (1996) J. Neurophysiol., 75 (2), pp. 867-876
  • Gardner, T., Cecchi, G., Magnasco, M., Laje, R., Mindlin, G.B., Simple motor gestures for birdsongs (2001) Phys. Rev. Lett., 87 (20)
  • Alonso, R., Goller, F., Mindlin, G.B., Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension (2014) Phys. Rev. E, 89 (3)
  • Alliende, J.A., Méndez, J.M., Goller, F., Mindlin, G.B., Hormonal acceleration of song development illuminates motor control mechanism in canaries (2010) Dev. Neurobiol., 70 (14), pp. 943-960
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys. Rev. E, 68 (4)
  • Titze, I.R., The physics of small amplitude oscillation of the vocal folds (1988) J. Acoust. Soc. Am., 83 (4), pp. 1536-1552
  • Amador, A., Mindlin, G.B., Beyond harmonic sounds in a simple model for birdsong production (2008) Chaos, 18 (4)
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., Dynamical origin of spectrally rich vocalizations in birdsong (2008) Phys. Rev. E, 78 (1), p. 011905
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from Zebra finch song (2011) Phys. Rev. E, 84 (5)
  • Amador, A., Margoliash, D., A mechanism for frequency modulation in songbirds shared with humans (2013) J. Neurosci., 33 (27), pp. 11136-11144
  • Margoliash, D., Konishi, M., Auditory representation of autogenous song in the song system of white-crowned sparrows (1985) Proc. Natl. Acad. Sci., 82 (17), pp. 5997-6000
  • Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495 (7439), pp. 59-64
  • Steinecke, I., Herzel, H., Bifurcations in an asymmetric vocal fold model (1995) J. Acoust. Soc. Am., 97 (3), pp. 1874-1884
  • Lucero, J.C., Schoentgen, J., Modeling vocal fold asymmetries with coupled van der Pol oscillators (2013) In Proceedings of Meetings on Acoustics ICA2013, 19 (1). , (ASA)
  • Alonso, R.G., Kopuchian, C., Amador, A., de los Angeles Suarez, M., Tubaro, P.L., Mindlin, G.B., Difference between the vocalizations of two sister species of pigeons explained in dynamical terms (2016) J. Comp. Physiol. A, 202 (5), pp. 361-370
  • Krane, M.H., Aeroacoustic production of low-frequency unvoiced speech sounds (2005) J. Acoust. Soc. Am., 118 (1), pp. 410-427
  • Mindlin, G.B., Avian vocal production beyond low dimensional models (2017) J. Stat. Mech.: Theory Exp., 2017 (2), p. 024005
  • Nottebohm, F., Stokes, T.M., Leonard, C.M., Central control of song in the canary, Serinus canarius (1976) J. Comp. Neurol., 165 (4), pp. 457-486
  • Ashmore, R.C., Wild, J.M., Schmidt, M.F., Brainstem and forebrain contributions to the generation of learned motor behaviors for song (2005) J. Neurosci., 25 (37), pp. 8543-8554
  • Trevisan, M.A., Mindlin, G.B., Goller, F., Nonlinear model predicts diverse respiratory patterns of birdsong (2006) Phys. Rev. Lett., 96 (5)
  • Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., Low-dimensional dynamical model for the diversity of pressure patterns used in canary song (2009) Phys. Rev. E, 79 (4)
  • Amador, A., Boari, S., Mindlin, G.B., From perception to action in birdsong production: Dynamics of a whole loop (2017) Current Opinion in Systems Biology, 3, pp. 30-35
  • Alonso, R.G., Trevisan, M.A., Amador, A., Goller, F., Mindlin, G.B., A circular model for song motor control in Serinus canaria (2015) Front. Comput. Neurosci., 9 (1-9)
  • Alonso, R.G., Amador, A., Mindlin, G.B., An integrated model for motor control of song in Serinus canaria (2016) J. Physiol.-Paris, 110 (3), pp. 127-139
  • Hamaguchi, K., Tanaka, M., Mooney, R., A distributed recurrent network contributes to temporally precise vocalizations (2016) Neuron, 91 (3), pp. 680-693
  • Goldin, M.A., Alonso, L.M., Alliende, J.A., Goller, F., Mindlin, G.B., Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway (2013) PLoS One, 8 (6)
  • Goldin, M.A., Mindlin, G.B., Evidence and control of bifurcations in a respiratory system (2013) Chaos, 23 (4)
  • Lynch, G.F., Okubo, T.S., Hanuschkin, A., Hahnloser, R.H., Fee, M.S., Rhythmic continuous-time coding in the songbird analog of vocal motor cortex (2016) Neuron, 90 (4), pp. 877-892
  • Gibb, L., Gentner, T.Q., Abarbanel, H.D., Brain stem feedback in a computational model of birdsong sequencing (2009) J. Neurophysiol., 102 (3), pp. 1763-1778
  • Ott, E., Antonsen, T.M., Low dimensional behavior of large systems of globally coupled oscillators (2008) Chaos, 18 (3)
  • Kuramoto, Y., Collective synchronization of pulse-coupled oscillators and excitable units (1991) Phys. D: Nonlinear Phenom., 50 (1), pp. 15-30
  • Strogatz, S.H., From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators (2000) Phys. D: Nonlinear Phenom., 143 (1), pp. 1-20
  • Roulet, J., Mindlin, G.B., Average activity of excitatory and inhibitory neural populations (2016) Chaos, 26 (9)
  • Takahashi, D.Y., Fenley, A.R., Teramoto, Y., Narayanan, D.Z., Borjon, J.I., Holmes, P., Ghazanfar, A.A., The developmental dynamics of marmoset monkey vocal production (2015) Science, 349 (6249), pp. 734-738
  • Bouchard, K.E., Mesgarani, N., Johnson, K., Chang, E.F., Functional organization of human sensorimotor cortex for speech articulation (2013) Nature, 495 (7441), p. 327
  • Tytell, E.D., Holmes, P., Cohen, A.H., Spikes alone do not behavior make: Why neuroscience needs biomechanics (2011) Curr. Opin. Neurobiol., 21 (5), pp. 816-822

Citas:

---------- APA ----------
(2017) . Nonlinear dynamics in the study of birdsong. Chaos, 27(9).
http://dx.doi.org/10.1063/1.4986932
---------- CHICAGO ----------
Mindlin, G.B. "Nonlinear dynamics in the study of birdsong" . Chaos 27, no. 9 (2017).
http://dx.doi.org/10.1063/1.4986932
---------- MLA ----------
Mindlin, G.B. "Nonlinear dynamics in the study of birdsong" . Chaos, vol. 27, no. 9, 2017.
http://dx.doi.org/10.1063/1.4986932
---------- VANCOUVER ----------
Mindlin, G.B. Nonlinear dynamics in the study of birdsong. Chaos. 2017;27(9).
http://dx.doi.org/10.1063/1.4986932