Artículo

Pérez, G.L.; Torremorell, A.; Mugni, H.; Rodríguez, P.; Solange Vera, M.; Do Nascimento, M.; Allende, L.; Bustingorry, J.; Escaray, R.; Ferraro, M.; Izaguirre, I.; Pizarro, H.; Bonetto, C.; Morris, D.P.; Zagarese, H. "Effects of the herbicide roundup on freshwater microbial communities: A mesocosm study" (2007) Ecological Applications. 17(8):2310-2322
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The impact of the widely used herbicide glyphosate has been mainly studied in terrestrial weed control, laboratory bioassays, and field studies focusing on invertebrates, amphibians, and fishes. Despite the importance of phytoplankton and periphyton communities at the base of the aquatic food webs, fewer studies have investigated the effects of glyphosate on freshwater microbial assemblages. We assessed the effect of the commercial formulation Roundup using artificial earthen mesocosms. The herbicide was added at three doses: a control (without Roundup) and two treatments of 6 and 12 mg/L of the active ingredient (glyphosate). Estimates of the dissipation rate (k) were similar in the two treatments (half-lives of 5.77 and 7.37 d, respectively). The only two physicochemical parameters showing statistically significant differences between treatments and controls were the downward vertical spectral attenuation coefficient kd(λ), where λ is wavelength, and total phosphorus concentration (TP). At the end of the experiment, the treated mesocosms showed a significant increase in the ratio kd(490 nm)/kd(550 nm) and an eightfold increase in TP. Round-up affected the structure of phytoplankton and periphyton assemblages. Total micro- and nanophytoplankton decreased in abundance in treated mesocosms. In contrast, the abundance of picocyanobacteria increased by a factor of about 40. Primary production also increased in treated mesocosms (roughly by a factor of two). Similar patterns were observed in the periphytic assemblages, which showed an increased proportion of dead : live individuals and increased abundances of cyanobacteria (about 4.5-fold). Interestingly, the observed changes in the microbial assemblages were captured by the analysis of the pigment composition of the phytoplankton, the phytoplankton absorption spectra, and the analysis of the optical properties of the water. The observed changes in the structure of the microbial assemblages are more consistent with a direct toxicological effect of glyphosate rather than an indirect effect mediated by phosphorus enrichment. © 2007 by the Ecological Society of America.

Registro:

Documento: Artículo
Título:Effects of the herbicide roundup on freshwater microbial communities: A mesocosm study
Autor:Pérez, G.L.; Torremorell, A.; Mugni, H.; Rodríguez, P.; Solange Vera, M.; Do Nascimento, M.; Allende, L.; Bustingorry, J.; Escaray, R.; Ferraro, M.; Izaguirre, I.; Pizarro, H.; Bonetto, C.; Morris, D.P.; Zagarese, H.
Filiación:Instituto de Investigaciones Biotecnológicas, Instituto Tecnológico de Chascomús (Intech), CONICET, Camino Circunvalación Laguna Km 6, CC 164, 7130, Chascomús, Argentina
Instituto de Limnología Dr. Ringuelet, Avenida Calchaquí km 23.5, 1888, Florencio Varela, Buenos Aires, Argentina
Departamento de Ecología, Genética Y Evolución, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015, United States
Palabras clave:Glyphosate; Herbicide; Optical properties; Periphyton; Phytoplankton; Pigments; Primary production; Roundup; Water chemistry; Wetlands; abundance; bioassay; ecological impact; food web; freshwater ecosystem; glyphosate; mesocosm; microbial community; nanoplankton; optical property; periphyton; pesticide application; phosphorus; physicochemical property; phytoplankton; pigment; primary production; toxicology; water chemistry; Amphibia; Cyanobacteria; Invertebrata; Pisces; drug derivative; fresh water; glycine; glyphosate; herbicide; pigment; alga; article; bacterium; chemistry; drug effect; ecosystem; environmental protection; microbiology; phytoplankton; time; water pollutant; water pollution; Algae; Bacteria; Conservation of Natural Resources; Ecosystem; Fresh Water; Glycine; Herbicides; Phytoplankton; Pigments, Biological; Time Factors; Water Pollutants, Chemical; Water Pollution, Chemical
Año:2007
Volumen:17
Número:8
Página de inicio:2310
Página de fin:2322
DOI: http://dx.doi.org/10.1890/07-0499.1
Título revista:Ecological Applications
Título revista abreviado:Ecol. Appl.
ISSN:10510761
CODEN:ECAPE
CAS:glycine, 56-40-6, 6000-43-7, 6000-44-8; glyphosate, 1071-83-6; Glycine, 56-40-6; glyphosate, 1071-83-6; Herbicides; Pigments, Biological; Water Pollutants, Chemical
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10510761_v17_n8_p2310_Perez

Referencias:

  • Ali, A., Fletcher, R.A., Phytotoxic action of glyphosate and amitrole on corn seedlings (1978) Canadian Journal of Botany, 56, pp. 2196-2202
  • Standard methods for the examination of water and wastewater (1998) American Publication Health Association, , American Publication Health Association, 20th edition, Washington, D.C, USA
  • Austin, A.P., Harris, G.E., Lucey, W.P., Impact of an organophosphate herbicide (glyphosatet) on periphyton communities developed in experimental streams (1991) Bulletin of Environment Contamination and Toxicology, 47, pp. 29-35
  • Bell, S. G., and G. A. Codd. 1996. Detection analysis and risk assessment of cyanobacterial toxins. Pages 109-122 in R. E. Hester and R. M. Harrison, editors. Agricultural chemicals and the environment. Issues in environmental science and technology no. 5. Royal Society of Chemistry, Cambridge, UK; Bowmer, K.H., Adsorption characteristics of seston in water: Implications for the use of aquatic herbicides (1982) Australian Journal of Marine and Freshwater Research, 33, pp. 443-458
  • Bricaud, A., Stramski, D., Spectral absorption of living phytoplankton and non algal biogenus matter: A comparison between the Peru upwelling area and the Sargasso Sea (1990) Limnology and Oceanography, 35, pp. 562-582
  • Campbell, W.F., Evans, J.O., Reed, S.C., Effects of glyphosate on chloroplast ultrastructure of quackgrass mesophyll cells (1976) Weed Science, 24, pp. 22-25
  • Carmichael, W.W., The toxins of Cyanobacteria (1994) Scientific American, 270, pp. 78-86
  • Caron, D.A., Technique for enumeration of heterotrophic and phototrophic nano-phytoplankton, using epifluorescence microscopy, and comparison with other procedures (1983) Applied Environmental Microbiology, 46, pp. 491-498
  • Cedergreen, N., Streibig, J.C., The toxicity of herbicides to non-target aquatic plants and algae: Assessment of predictive factors and hazard (2005) Pest Management Science, 61, pp. 1152-1160
  • Duke, S.O., Baerson, S.R., Rimando, A.M., Herbicides: Glyphosate (2003) Encyclopedia of agrochemicals, , J. R. Plimmer, D. W. Gammon, and N. N. Ragsdale, editors, John Wiley and Sons, New York, New York, USA [doi:10.1002/047126363X.agr.119
  • Feng, J.C., Thompson, D.G., Reynolds, P., Fate of glyphosate in a Canadian forest watershed. 1. Aquatic residues and off-target deposit assessment (1990) Journal of Agricultural and Food Chemistry, 38, pp. 1110-1118
  • Folmar, L.C., Sanders, H.O., Julin, A.M., Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates (1979) Archives of Environment Contamination and Toxicology, 8, pp. 269-278
  • Franz, J.E., Mao, M.K., Sikorski, J.A., Glyphosate. A unique global herbicide (1997) American Chemistry Society, ASC Monographs, 189, pp. 1-600
  • Gardner, S.C., Grue, C.E., Grassley, J.M., Lenz, L.A., Lindenauer, J.M., Seeley, M.E., Single species algal (Ankistrodesmus) toxicity tests with Rodeo® and Garlon® 3a (1997) Bulletin of Environment Contamination and Toxicology, 59, pp. 492-499
  • Giesy, J.P., Dobson, S., Solomon, K.R., Ecotoxicological risk assessment for Roundup® herbicide (2000) Review of Contamination and Toxicology, 167, pp. 35-120
  • Glass, R.L., Phosphate adsorption by soils and clay minerals (1987) Journal of Agricultural Food Chemistry, 35, pp. 497-500
  • Goldsborough, L.G., Beck, A.E., Rapid dissipation of glyphosate in small forest ponds (1989) Archives of Environment Contamination and Toxicology, 18, pp. 537-544
  • Goldsborough, L.G., Brown, D.J., Effect of glyphosate (Roundup® formulation) on periphytic algal photosynthesis (1988) Bulletin of Environment Contamination and Toxicology, 41, pp. 253-260
  • Goldsborough, L.G., Brown, D.J., Rapid dissipation of glyphosate and aminomethylphosphonic acid in water and sediments of boreal forest ponds (1989) Environmental Toxicology and Chemistry, 12, pp. 1139-1147
  • Goldsborough, L.G., Brown, D.J., Dissipation of glyphosate and aminomethylphosphonic acid in water and sediments of boreal forest ponds (1993) Environmental Toxicology and Chemistry, 12, pp. 1139-1147
  • Gresshoff, P.M., Growth inhibition by glyphosate and reversal of its action by phenylalanine and tyrosine (1979) Australian Journal of Plant Physiology, 6, pp. 177-185
  • Gustavson, K., Mohlenberg, F., Schlüter, L., Effects of exposure duration of herbicides on natural stream periphyton communities and recovery (2003) Archives of Environment Contamination and Toxicology, 45, pp. 48-98
  • Hance, R., Adsorption of glyphosate by soils (1976) Pesticide Science, 7, pp. 363-366
  • Hartman, W.A., Martin, D.B., Effects of four agricultural pesticides on Daphnia pulex, Lemna minor, and Potamogeton pectinatus (1985) Bulletin of Environmental Contamination and Toxicology, 35, pp. 646-651
  • Hawley, G.R.W., Whitton, B., Survey of algal picoplankton from lakes in five continents (1991) Verhandlungen Internationale Vereinigung Limnology, 24, pp. 1220-1222
  • Hernando, F., Royuela, M., Muñoz-Rueda, A., Gonzalez-Murua, C., Effect of glyphosate on the greening process and photosynthetic metabolism in Chlorella pyrenoidosa (1989) Journal of Plant Physiology, 134, pp. 26-31
  • Hoagland, K.D., Carder, J.P., Spawn, R.L., Effects of organic toxic substances (1996) Algal ecology. Freshwater benthic ecosystems, pp. 469-496. , R. J. Stevenson, M. L. Bothwell, and R. L. Lowe, editors, Academic Press, San Diego, California, USA
  • Hurley, J.P., Analysis of aquatic pigments by high performance liquid chromatography (1988) Journal of Analytical Purificación, 3, pp. 12-16
  • (2003) La sustentabilidad de la producción agropecuaria Argentina, , www.inta.gov.ar, Instituto Nacional de Tecnologías Agropecuarias
  • Izaguirre, I., Vinocur, A., Typology of shallow lakes of the Saldo River basin (Argentina), based on phytoplankton communities (1994) Hydrobiologia, 277, pp. 49-62
  • James, C., (2003) Global status of commercialized transgenic crops, p. 30. , International Service for the Acquisition of Agribiotech Applications
  • Kallqvist, T., Abdel-Hamid, M.I., Berge, D., Effects of agricultural pesticides on freshwater plankton communities in enclosures (1994) Norwegian Journal of Agricultural Sciences, 13 (SUPPL.EMENT), pp. 133-152
  • Kirk, J.T.O., (1994) Light and photosynthesis in aquatic ecosystems, , Cambridge University Press, Cambridge, UK
  • Kishino, M., Booth, C.R., Okami, N., Underwater radiant energy absorbed by phytoplankton, detritus, dissolved organic matter, and pure water (1984) Limnology and Oceanography, 22, pp. 340-349
  • Kreutzweiser, D.P., Kingsbury, P.D., Feng, J.C., Drift response of stream invertebrates to aerial applications of glyphosate (1989) Bulletin of Environmental Contamination and Toxicology, 42, pp. 331-338
  • Lapitz, R., Evia, G., Gudynas, E., Soja y Carne en el Mercosur (2004) Coscoroba, , Montevideo, Uruguay
  • Laurion, I., Lami, A., Sommaruga, R., Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages (2002) Aquatic Microbial Ecology, 26, pp. 283-294
  • Lowe, R.L., Pan, Y., Benthic algal communities as biological monitors (1996) Algal ecology. Freshwater benthic ecosystems, pp. 705-740. , R. J. Stevenson, M. L. Bothwell, and R. L. Lowe, editors, Academic Press, San Diego, California, USA
  • Mantoura, R.F.C., Llewellyn, C.A., The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography (1983) Analytica Chimica Acta, 151, pp. 297-314
  • Masson, S., Pinel-Allow, B., Smith, B.H., Total phosphorus-chlorophyll a size fraction relationships in southern Québec lakes (2000) Limnology and Oceanography, 45, pp. 732-740
  • Miles, C.J., Wallace, L.R., Moye, H.A., Determination of glyphosate herbicide and (aminomethyl) phosphonic acid in natural waters by liquid chromatography using pre-column fluorogenic labeling with 9-fluorenylmethyl chloroformate (1986) Journal of the Association of Official Analytical Chemists, 69, pp. 458-461
  • Mitchell, B.G., Kiefer, D.A., Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean (1988) Deep-Sea Research, 35, pp. 665-689
  • Mitchell, D.G., Chapman, P.M., Longs, T.J., Acute toxicity of Roundup and Rodeo herbicides to rainbow trout, chinook, and coho salmon (1987) Bulletin of Environmental Contamination and Toxicology, 39, pp. 1028-1035
  • Newton, M., Howard, K.M., Kelpsas, B.R., Danhaus, R., Lottman, C.M., Dubelman, S., Fate of glyphosate in an Oregon forest ecosystem (1984) Journal of Agricultural and Food Chemistry, 32, pp. 1144-1151
  • Nomura, N.S., Hilton, H.W., The adsorption and degradation of glyphosate in five Hawaiian sugarcane soils (1977) Weed Research, 17, pp. 113-121
  • Pechlaner, R., Glyphosate in herbicides: An overlooked threat to microbial bottom-up processes in freshwater systems (2002) Verhandlungen Internationale Vereinigung Limnology, 28, pp. 1831-1835
  • Porter, K.C., Feig, Y.S., The use of DAPI for identifying and counting aquatic microflora (1980) Limnology and Oceanography, 25, pp. 943-948
  • Powell, H.A., Kerby, N.W., Rowell, P., Natural tolerance of cyanobacteria to the herbicide glyphosate (1991) New Phytology, 119, pp. 421-426
  • Powell, H.A., Kerby, N.W., Rowell, P., Mousdale, D.M., Coggins, J.R., Purification and properties of a glyphosate-tolerant 5- enolpyruvylshikimate-3-phosphate synthase from the cyanobacterium Anabaena variabilis (1992) Planta, 188, pp. 484-490
  • Pratt, J.R., Melendez, A.E., Barreiro, R., Bowers, N.J., Predicting the ecological effects of herbicides (1997) Ecological Applications, 7, pp. 1117-1124
  • Rankin, L.M., Franzmann, P.D., McMeekin, T.A., Burton, H.R., Seasonal distribution of picocyanobacteria in Ace Lake, a marine-derived Antarctic lake (1997) Antarctic communities, species, structure and survival, pp. 178-184. , B. Battaglia, J. Valencia, and D. W. H. Walton, editors, Cambridge University Press, Cambridge, UK
  • Readman, J.W., Devilla, R.A., Tarran, G., Llewellyn, C.A., Fileman, T.W., Easton, A., Burkill, P.H., Mantoura, R.F.C., Flow cytometry and pigment analyses as tools to investigate the toxicity of herbicides to natural phytoplankton communities (2004) Marine Environmental Research, 58, pp. 353-358
  • Relyea, R.A., Growth and survival of five amphibian species exposed to combinations of pesticides (2004) Environmental Toxicology and Chemistry, 23, pp. 1737-1742
  • Relyea, R.A., The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities (2005) Ecological Applications, 15, pp. 618-627
  • Relyea, R.A., The lethal impact of Roundup on aquatic and terrestrial amphibians (2005) Ecological Applications, 15, pp. 1118-1124
  • Relyea, R.A., Schoeppner, N.M., Hoverman, J.T., Pesticides and amphibians: The importance of assemblage context (2005) Ecological Applications, 5, pp. 1125-1134
  • Ringuelet, R., Tipología de las lagunas de la Provincia de Buenos Aires. La Limnología Regional y los Tipos Lagunares. (1972) Physis, 31, pp. 55-76
  • Ringuelet, R., Salibián, A., Claverie, E., Ilhero, S., Limnología química de las Lagunas Pampásicas. (1968) Physis, 17, pp. 201-221
  • Rohr, J.R., Crumrine, P.W., Effects of an herbicide and an insecticide on pond community structure and processes (2005) Ecological Applications, 15, pp. 1135-1147
  • Roy, D.N., Konar, S.K., Banerjee, S., Charles, D.A., Thompson, D.G., Prasad, R., Uptake and persistence of the herbicide glyphosate in fruit of wild blueberry and red raspberry (1989) Canadian Journal of Forest Research, 19, pp. 842-847
  • Rueppel, M.L., Brightwell, B.B., Schaefer, J., Marvel, J.T., Metabolism and degradation of glyphosate in soil and water (1977) Journal of Agricultural and Food Chemistry, 25, pp. 517-528
  • Sáenz, M.E., Di Marzio, W.D., Alberdi, J.L., del Carmen Tortorelli, M., Effects of technical grade and a commercial formulation of glyphosate on algal population growth (1997) Bulletin of Environmental Contamination and Toxicology, 59, pp. 638-644
  • Schaffer, J.D., Sebetich, M.J., Effects of aquatic herbicides on primary productivity of phytoplankton in the laboratory (2004) Bulletin of Environmental Contamination and Toxicology, 72, pp. 1032-1037
  • Servizi, J.A., Gordon, R.W., Martens, D.W., Acute toxicity of Garlon 4 and Roundup herbicides to salmon, Daphnia, and trout (1987) Bulletin of Environmental Contamination and Toxicology, 39, pp. 15-22
  • RESOLVE, S., (1992) Workshop on aquatic microcosm for ecological assessment of pesticides, , The SETAC Foundation for Environmental Education and Resolve a program of the World Wildlife Fund, Wintergreen, Virginia, USA
  • Sprankle, P.W., Meggitt, F., Penner, D., Rapid inactivation of glyphosate in the soil (1975) Weed Science, 23, pp. 224-228
  • Sprankle, P.W., Meggitt, F., Penner, D., Adsorption, mobility, and microbial degradation of glyphosate in the soil (1975) Weed Science, 23, pp. 229-234
  • Steeman-Nielsen, E., The use of radioactive carbon (14C) for measuring organic production in the sea (1952) Journal du Conseil, 18, pp. 117-140
  • Stockner, J.G., Phototrophic picoplankton: An overview from marine and freshwater ecosystems (1988) Limnology and Oceanography, 33, pp. 765-775
  • Streit, B., Bioaccumulation processes in ecosystems (1992) Experientia, 48, pp. 955-970
  • Sun, J., Liu, D., Geometric models for calculating cell biovolume and surface area for phytoplankton (2003) Journal of Plankton Research, 25 (11), pp. 1331-1346
  • Thompson, D.G., Wojtaszek, B.F., Staznik, B., Chartrand, D.T., Stephenson, G.R., Chemical and biomonitoring to assess potential acute effects of Visiont herbicide on native amphibian larvae in forest wetlands (2004) Environmental Contamination and Toxicology, 23, pp. 843-849
  • Trüper, H.G., Yentsch, C.S., Use of glass fiber filters for the rapid preparation of in vivo absorption spectra of photosynthetic bacteria (1967) Journal of Bacteria, 94, pp. 1255-1256
  • Registration eligibility decision (RED): Glyphosate (1993) Special Review and Registration Division, , U.S. Environmental Protection Agency, Office of Pesticide Programs. U.S. Environmental Protection Agency, Washington, D.C, USA
  • Utermöhl, H., Zur vervollkommnung der quantitativen Phytoplankton Methodik. (1958) Mitteilungen Internationale Vereinigung für Limnologie, 9, pp. 1-38
  • Venrick, E.L., How many cells to count? (1978) Phytoplankton manual, pp. 167-180. , A. Sournia, editor, UNESCO, Paris, France
  • Wan, M.T., Watts, R.G., Moul, D.J., Effects of different dilution water types on the acute toxicity to juvenile Pacific salmonids and rainbow trout of glyphosate and its formulated products (1989) Bulletin of Environmental Contamination and Toxicology, 43, pp. 378-385
  • Wynn-Williams, D.D., Direct quantification of microbial propagules and spores (1992) Biotas manual of methods, pp. 1-34. , D. D. Wynn-Williams, editor, Scientific Committee on Antarctic Research, Cambridge, UK
  • Zaranyika, M.F., Nyandoro, G.M., Degradation of glyphosate in the aquatic environment: An enzymatic kinetic model that takes into account microbial degradation of both free and colloidal (or sediment) particle adsorbed glyphosate (1993) Journal of Agricultural and Food Chemistry, 41, pp. 838-884

Citas:

---------- APA ----------
Pérez, G.L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., Do Nascimento, M., Allende, L.,..., Zagarese, H. (2007) . Effects of the herbicide roundup on freshwater microbial communities: A mesocosm study. Ecological Applications, 17(8), 2310-2322.
http://dx.doi.org/10.1890/07-0499.1
---------- CHICAGO ----------
Pérez, G.L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., Do Nascimento, M., et al. "Effects of the herbicide roundup on freshwater microbial communities: A mesocosm study" . Ecological Applications 17, no. 8 (2007) : 2310-2322.
http://dx.doi.org/10.1890/07-0499.1
---------- MLA ----------
Pérez, G.L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., Do Nascimento, M., et al. "Effects of the herbicide roundup on freshwater microbial communities: A mesocosm study" . Ecological Applications, vol. 17, no. 8, 2007, pp. 2310-2322.
http://dx.doi.org/10.1890/07-0499.1
---------- VANCOUVER ----------
Pérez, G.L., Torremorell, A., Mugni, H., Rodríguez, P., Solange Vera, M., Do Nascimento, M., et al. Effects of the herbicide roundup on freshwater microbial communities: A mesocosm study. Ecol. Appl. 2007;17(8):2310-2322.
http://dx.doi.org/10.1890/07-0499.1