Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The high-barrier quantum tunneling regime of a Bose-Einstein condensate confined in a ring-shaped optical lattice is investigated. By means of a change of basis transformation, connecting the set of "vortex" Bloch states and a Wannier-like set of localized wave functions, we derive a generalized Bose-Hubbard Hamiltonian. In addition to the usual hopping rate terms, such a Hamiltonian takes into account interaction-driven tunneling processes, which are shown to play a principal role at high filling factors, when the standard hopping rate parameter turns out to be negative. By calculating the energy and atomic current of a Bloch state, we show that such a hopping rate must be replaced by an effective hopping rate parameter containing the additional contribution an interaction-driven hopping rate. Such a contribution turns out to be crucial at high filling factors, since it preserves the positivity of the effective hopping rate parameter. Level crossings between the energies per particle of a Wannier-like state and the superfluid ground state are interpreted as a signature of the transition to configurations with macroscopically occupied states at each lattice site. © 2011 American Physical Society.

Registro:

Documento: Artículo
Título:Bose-Hubbard model in a ring-shaped optical lattice with high filling factors
Autor:Cataldo, H.M.; Jezek, D.M.
Filiación:IFIBA-CONICET and Departamento de Física, FCEN-UBA Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Bloch state; Bose Hubbard model; Bose-Einstein condensates; Bose-Hubbard Hamiltonian; Change of basis; Filling factor; Hopping rate; Lattice sites; Level crossing; Localized wave functions; Quantum tunneling; Ring-shaped optical lattices; Tunneling process; Crystal lattices; Filling; Hamiltonians; Hubbard model; Optical materials; Statistical mechanics; Steam condensers; Ionic conduction
Año:2011
Volumen:84
Número:1
DOI: http://dx.doi.org/10.1103/PhysRevA.84.013602
Título revista:Physical Review A - Atomic, Molecular, and Optical Physics
Título revista abreviado:Phys Rev A
ISSN:10502947
CODEN:PLRAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v84_n1_p_Cataldo

Referencias:

  • Bloch, I., Dalibard, J., Zwerger, W., (2008) Rev. Mod. Phys., 80, p. 885. , RMPHAT 0034-6861 10.1103/RevModPhys.80.885
  • Yukalov, V.I., (2009) Laser Phys., 19, p. 1. , LAPHEJ 1054-660X 10.1134/S1054660X09010010
  • Greiner, M., Mandel, O., Esslinger, T., Hansch, T.W., Bloch, I., Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms (2002) Nature, 415 (6867), pp. 39-44. , DOI 10.1038/415039a
  • Jaksch, D., Bruder, C., Cirac, J.I., Gardiner, C.W., Zoller, P., (1998) Phys. Rev. Lett., 81, p. 3108. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.3108
  • Van Oosten, D., Van Der Straten, P., Stoof, H.T.C., (2003) Phys. Rev. A, 67, p. 033606. , PLRAAN 1050-2947 10.1103/PhysRevA.67.033606
  • Jezek, D.M., Cataldo, H.M., (2011) Phys. Rev. A, 83, p. 013629. , PLRAAN 1050-2947 10.1103/PhysRevA.83.013629
  • Ramanathan, A., Wright, K.C., Muniz, S.R., Zelan, M., Hill, W.T., Lobb, C.J., Helmerson, K., Campbell, G.K., (2011) Phys. Rev. Lett., 106, p. 130401. , PRLTAO 0031-9007 10.1103/PhysRevLett.106.130401
  • Amico, L., Osterloh, A., Cataliotti, F., Quantum many particle systems in ring-shaped optical lattices (2005) Physical Review Letters, 95 (6), pp. 1-4. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRL:95, DOI 10.1103/PhysRevLett.95.063201, 063201
  • Henderson, K., Ryu, C., MacCormick, C., Boshier, M.G., (2009) New J. Phys., 11, p. 043030. , NJOPFM 1367-2630 10.1088/1367-2630/11/4/043030
  • Rey, A.M., Burnett, K., Satija, I.I., Clark, C.W., Entanglement and the Mott transition in a rotating bosonic ring lattice (2007) Physical Review A - Atomic, Molecular, and Optical Physics, 75 (6), p. 063616. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.75.063616&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.75.063616
  • Casetti, L., Penna, V., Vortex structures in a chain coupled bosonic wells and the Mott regime (2002) Journal of Low Temperature Physics, 126 (1-2), pp. 455-460. , DOI 10.1023/A:1013786227472, Proceedings of the International Symposium on Quantum Fluids and Solids QFS 2001
  • Dunningham, J., Hallwood, D., Creation of macroscopic superpositions of flow states with Bose-Einstein condensates (2006) Physical Review A - Atomic, Molecular, and Optical Physics, 74 (2), p. 023601. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.74.023601&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.74.023601
  • Dziarmaga, J., Meisner, J., Zurek, W.H., (2008) Phys. Rev. Lett., 101, p. 115701. , PRLTAO 0031-9007 10.1103/PhysRevLett.101.115701
  • J. Dziarmaga, M. Tylutki, and W. H. Zurek, (2011), e-print arXiv: 1103.0669; Hazzard, K.R.A., Mueller, E.J., (2010) Phys. Rev. A, 81, p. 031602. , PLRAAN 1050-2947 10.1103/PhysRevA.81.031602
  • Dutta, O., Eckardt, A., Hauke, P., Malomed, B., Lewenstein, M., (2011) New J. Phys., 13, p. 023019. , NJOPFM 1367-2630 10.1088/1367-2630/13/2/023019
  • Li, J., Yu, V., Dudarev, A.M., Niu, Q., Interaction broadening of Wannier functions and Mott transitions in atomic BEC (2006) New Journal of Physics, 8, p. 154. , http://ej.iop.org/links/rP7uVNU,F/cNcGsJY42xGU2FCQav5vpA/njp6_8_154.pdf, DOI 10.1088/1367-2630/8/8/154, PII S1367263006248420
  • B. Wu and J. Shi, e-print arXiv: 0907.2046 (2009); Schaff, J.-F., Akdeniz, Z., Vignolo, P., (2010) Phys. Rev. A, 81, p. 041604. , PLRAAN 1050-2947 10.1103/PhysRevA.81.041604
  • D. K. Faust and W. P. Reinhardt, e-print arXiv: 1008.0217 (2010); Ferrando, A., Discrete-symmetry vortices as angular Bloch modes (2005) Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72 (3), pp. 1-6. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRE:72, DOI 10.1103/PhysRevE.72.036612, 036612
  • Perez-Garcia, V.M., Garcia-March, M.A., Ferrando, A., Symmetry-assisted vorticity control in Bose-Einstein condensates (2007) Physical Review A - Atomic, Molecular, and Optical Physics, 75 (3), p. 033618. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.75.033618&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.75.033618
  • Ananikian, D., Bergeman, T., Gross-Pitaevskii equation for Bose particles in a double-well potential: Two-mode models and beyond (2006) Physical Review A - Atomic, Molecular, and Optical Physics, 73 (1), p. 013604. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevA.73.013604&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevA.73.013604
  • Jia, X.Y., Li, W.D., Liang, J.Q., (2008) Phys. Rev. A, 78, p. 023613. , PLRAAN 1050-2947 10.1103/PhysRevA.78.023613
  • Viscondi, T.F., Furuya, K., (2011) J. Phys. A, 44, p. 175301. , PLRAAN 1751-8113 10.1088/1751-8113/44/17/175301
  • Ryu, C., Andersen, M.F., Cladé, P., Natarajan, V., Helmerson, K., Phillips, W.D., (2007) Phys. Rev. Lett., 99, p. 260401. , PRLTAO 0031-9007 10.1103/PhysRevLett.99.260401
  • Weiler, C.N., Neely, T.W., Scherer, D.R., Bradley, A.S., Davis, M.J., Anderson, B.P., (2008) Nature (London), 455, p. 948. , NATUAS 0028-0836 10.1038/nature07334
  • Gross, E.P., (1961) Nuovo Cimento, 20, p. 454. , NUCIAD 0029-6341 10.1007/BF02731494
  • Pitaevskii, L.P., (1961) Zh. Eksp. Teor. Fiz., 40, p. 646
  • Pitaevskii, L.P., (1961) Sov. Phys. JETP, 13, p. 451
  • Castin, Y., Dum, R., (1999) Eur. Phys. J. D, 7, p. 399. , EPJDF6 1434-6060 10.1007/s100530050584
  • Ashcroft, N.W., Mermin, N.D., (1976) Solid State Physics, , in Saunders College Publishing, Fort Worth
  • Blakie, P.B., Clark, C.W., (2004) J. Phys. B, 37, p. 1391. , JPAPEH 0953-4075 10.1088/0953-4075/37/7/002
  • Gati, R., Oberthaler, M.K., A bosonic Josephson junction (2007) Journal of Physics B: Atomic, Molecular and Optical Physics, 40 (10), pp. R61-R89. , DOI 10.1088/0953-4075/40/10/R01, PII S0953407507117995, R01
  • Schachenmayer, J., Pupillo, G., Daley, A.J., (2010) New J. Phys., 12, p. 025014. , NJOPFM 1367-2630 10.1088/1367-2630/12/2/025014
  • Jezek, D.M., Cataldo, H.M., in preparation; Kühner, T.D., White, S.R., Monien, H., (2000) Phys. Rev. B, 61, p. 12474. , PLRBAQ 1098-0121 10.1103/PhysRevB.61.12474

Citas:

---------- APA ----------
Cataldo, H.M. & Jezek, D.M. (2011) . Bose-Hubbard model in a ring-shaped optical lattice with high filling factors. Physical Review A - Atomic, Molecular, and Optical Physics, 84(1).
http://dx.doi.org/10.1103/PhysRevA.84.013602
---------- CHICAGO ----------
Cataldo, H.M., Jezek, D.M. "Bose-Hubbard model in a ring-shaped optical lattice with high filling factors" . Physical Review A - Atomic, Molecular, and Optical Physics 84, no. 1 (2011).
http://dx.doi.org/10.1103/PhysRevA.84.013602
---------- MLA ----------
Cataldo, H.M., Jezek, D.M. "Bose-Hubbard model in a ring-shaped optical lattice with high filling factors" . Physical Review A - Atomic, Molecular, and Optical Physics, vol. 84, no. 1, 2011.
http://dx.doi.org/10.1103/PhysRevA.84.013602
---------- VANCOUVER ----------
Cataldo, H.M., Jezek, D.M. Bose-Hubbard model in a ring-shaped optical lattice with high filling factors. Phys Rev A. 2011;84(1).
http://dx.doi.org/10.1103/PhysRevA.84.013602