Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We use hydrodynamic equations to study the formation of Faraday waves in a superfluid Fermi gas at zero temperature confined in a strongly elongated cigar-shaped trap. First, we treat the role of the radial density profile in the limit of an infinite cylindrical geometry and analytically evaluate the wavelength of the Faraday pattern. The effect of the axial confinement is fully taken into account in the numerical solution of hydrodynamic equations, and shows that the infinite cylinder geometry provides a very good description of the phenomena. © 2008 The American Physical Society.

Registro:

Documento: Artículo
Título:Faraday waves in elongated superfluid fermionic clouds
Autor:Capuzzi, P.; Vignolo, P.
Filiación:Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Institut Non Linéaire de Nice, Université de Nice-Sophia Antipolis, CNRS, 1361 route des Lucioles, 06560 Valbonne, France
Palabras clave:Electron gas; Faraday effect; Fermions; Hydrodynamics; Magnetic field effects; Magnetooptical effects; Superfluid helium; Cylindrical geometries; Faraday waves; Hydrodynamic equations; Infinite cylinders; Numerical solutions; Radial density profiles; Superfluid fermi gases; Zero temperatures; Fluid dynamics
Año:2008
Volumen:78
Número:4
DOI: http://dx.doi.org/10.1103/PhysRevA.78.043613
Título revista:Physical Review A - Atomic, Molecular, and Optical Physics
Título revista abreviado:Phys Rev A
ISSN:10502947
CODEN:PLRAA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v78_n4_p_Capuzzi

Referencias:

  • Faraday, M., (1831) Philos. Trans. R. Soc. London, 121, p. 299. , 10.1098/rstl.1831.0018
  • Cross, M.C., Hohenberg, P.C., (1993) Rev. Mod. Phys., 65, p. 851. , For a general review, see 10.1103/RevModPhys.65.851
  • Engels, P., Atherton, C., Hoefer, M.A., (2007) Phys. Rev. Lett., 98, p. 095301. , 10.1103/PhysRevLett.98.095301
  • Staliunas, K., Longhi, S., De Valcarcel, G.J., (2002) Phys. Rev. Lett., 89, p. 210406. , 10.1103/PhysRevLett.89.210406
  • García-Ripoll, J.J., Pérez-García, V.M., Torres, P., (1999) Phys. Rev. Lett., 83, p. 1715. , 10.1103/PhysRevLett.83.1715
  • Tozzo, C., Krämer, M., Dalfovo, F., (2005) Phys. Rev. A, 72, p. 023613. , 10.1103/PhysRevA.72.023613
  • Modugno, M., Tozzo, C., Dalfovo, F., (2006) Phys. Rev. A, 74, p. 061601. , 10.1103/PhysRevA.74.061601
  • Kagan, Yu., Manakova, L.A., (2007) Phys. Lett. A, 361, p. 401. , 10.1016/j.physleta.2006.09.106
  • Nicolin, A.I., Carretero-Gonzalez, R., Kevrekidis, P.G., (2007) Phys. Rev. A, 76, p. 063609. , 10.1103/PhysRevA.76.063609
  • Kagan, Yu., Surkov, E.L., Shlyapnikov, G.V., (1996) Phys. Rev. A, 54, p. 1753. , 10.1103/PhysRevA.54.R1753
  • Kagan, Yu., Manakova, L.A., (2007) Phys. Rev. A, 76, p. 023601. , 10.1103/PhysRevA.76.023601
  • Hu, H., Minguzzi, A., Liu, X.-J., Tosi, M.P., (2004) Phys. Rev. Lett., 93, p. 190403. , 10.1103/PhysRevLett.93.190403
  • Capuzzi, P., Vignolo, P., Federici, F., Tosi, M.P., (2006) Phys. Rev. A, 73, p. 021603. , 10.1103/PhysRevA.73.021603
  • Joseph, J., Clancy, B., Luo, L., Kinast, J., Turlapov, A., Thomas, J.E., (2007) Phys. Rev. Lett., 98, p. 170401. , 10.1103/PhysRevLett.98.170401
  • Tarruell, L., Teichmann, M., McKeever, J., Bourdel, T., Cubizolles, J., Khaykovich, L., Zhang, J., Salomon, C., (2007) Proceedings of the International School of Physics Enrico Fermi, Course CLXIV, Varenna, 2006, , edited by M. Inguscio, W. Ketterle, and C. Salomon (ISO Press, Amsterdam
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., Numerical Recipes in Fortran 77: The Art of Scientific Computing, , Cambridge University Press, Cambridge UK, 1992)
  • Hu, H., Liu, X.-J., Drummond, P.D., (2006) Europhys. Lett., 74, p. 574. , 10.1209/epl/i2006-10023-y

Citas:

---------- APA ----------
Capuzzi, P. & Vignolo, P. (2008) . Faraday waves in elongated superfluid fermionic clouds. Physical Review A - Atomic, Molecular, and Optical Physics, 78(4).
http://dx.doi.org/10.1103/PhysRevA.78.043613
---------- CHICAGO ----------
Capuzzi, P., Vignolo, P. "Faraday waves in elongated superfluid fermionic clouds" . Physical Review A - Atomic, Molecular, and Optical Physics 78, no. 4 (2008).
http://dx.doi.org/10.1103/PhysRevA.78.043613
---------- MLA ----------
Capuzzi, P., Vignolo, P. "Faraday waves in elongated superfluid fermionic clouds" . Physical Review A - Atomic, Molecular, and Optical Physics, vol. 78, no. 4, 2008.
http://dx.doi.org/10.1103/PhysRevA.78.043613
---------- VANCOUVER ----------
Capuzzi, P., Vignolo, P. Faraday waves in elongated superfluid fermionic clouds. Phys Rev A. 2008;78(4).
http://dx.doi.org/10.1103/PhysRevA.78.043613