Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We introduce a distorted wave method to calculate the nonlinear excitation effects occurring when a fast bare ion penetrates a free-electron gas. The central scheme of this work is to replace the undistorted plane waves leading to the Lindhard dielectric response function (or random phase approximation) by Coulomb waves with an effective charge. This impulse-type approximation is valid for velocities larger than the Fermi velocity. Stopping and mean free path are presented for impact of bare multicharged ions on aluminum free-electron gas. The Barkas effect is theoretically found, i.e., negative heavy particles lose energy at the lower rate than positive particles of the same velocity do. As the projectile charge increases, the single differential cross section per unit energy presents two effects: the plasmon peak sharpens and the binary peak starts to be increasingly noticeable. © 2003 The American Physical Society.

Registro:

Documento: Artículo
Título:Coulomb Lindhard approximation: Nonlinear excitation effects for fast ions penetrating a free-electron gas
Autor:Miraglia, J.E.
Filiación:Instituto de Astronomía y Física del Espacio, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Casilla de Correo 67, Sucursal 28, Buenos Aires, 1428, Argentina
Año:2003
Volumen:68
Número:2
Página de inicio:7
DOI: http://dx.doi.org/10.1103/PhysRevA.68.022904
Título revista:Physical Review A - Atomic, Molecular, and Optical Physics
Título revista abreviado:Phys Rev A
ISSN:10502947
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v68_n2_p7_Miraglia

Referencias:

  • Lindhard, J., (1954) K. Dans. Vidensk. Selsk. Mat. Fys. Medd., 28, p. 8
  • Barkas, W.H., Dyer, J.W., Heckman, H.H., (1963) Phys. Rev. Lett., 11, p. 26
  • Asley, J.C., Ritchie, R.H., (1970) Phys. Status Solidi, 38, p. 425
  • Kronig, R., Korringa, J., (1943) Physica (Amsterdam), 10, p. 406
  • Dorado, J.J., Crawford, O.H., Flores, F., (1994) Nucl. Instrum. Methods Phys. Res. B, 93, p. 175
  • Arnau, A., Zaremba, E., (1994) Nucl. Instrum. Methods Phys. Res. B, 90, p. 32
  • Mikkelsen, H.H., Sigmund, P., (1989) Phys. Rev. A, 40, p. 101
  • Sigmund, P., (1982) Phys. Rev. A, 26, p. 2497
  • N. R. Arista, Nucl. Instrum Methods Phys. Res. B (unpublished); Nagy, I., Echenique, P.M., (1993) Phys. Rev. A, 47, p. 3050
  • Hu, C.D., Zaremba, E., (1988) Phys. Rev. B, 37, p. 9268
  • Esenben, H., Sigmund, P., (1990) Ann. Phys. (N.Y.), 201, p. 152
  • Pitarke, J.M., Ritchie, R.H., Echenique, P., Zaremba, E., (1993) Europhys. Lett., 24, p. 613
  • Pitarke, J.M., Ritchie, R.H., Echenique, P.M., (1995) Phys. Rev. B, 52, p. 13 883
  • Bergara, A., Campillo, I., Pitarke, J.M., Echenique, P.M., (1997) Phys. Rev. B, 56, p. 15 654
  • Arbó, D.G., Gravielle, M.S., Miraglia, J.E., (2000) Phys. Rev. A, 62, p. 32901
  • Arbó, D.G., Gravielle, M.S., Miraglia, J.E., (2001) Phys. Rev. A, 64, p. 22902
  • Ormrod, J.H., Duckworth, H.E., (1963) Can. J. Phys., 41, p. 1424
  • Ormrod, J.H., MacDonald, J.R., Duckworth, H.E., (1965) Can. J. Phys., 43, p. 275
  • White, W., (1967), 38, p. 3660; Kreusler, S., Varelas, C., Sizmann, R., (1982) Phys. Rev. B, 26, p. 6099
  • Møller, S.P., (1997) Phys. Rev. A, 56, p. 2930
  • J.P. Coleman, Case Studies in Atomic Collision Physics, edited by E.W. McDaniel and M.R.C. McDowell (North-Holland, Amsterdam, 1969), Vol. I, Chap. 3, and references within; Ritchie, R.H., (1959) Phys. Rev., 114, p. 644
  • Nordsieck, A., (1954) Phys. Rev., 93, p. 785
  • Gravielle, M.S., Miraglia, J.E., (1992) Comput. Phys. Commun., 69, p. 53
  • M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), Chap. 15; Miraglia, J.E., (1982) J. Phys. B, 15, p. 4205
  • For large distances, (Formula presented) If (Formula presented) (and so (Formula presented) is complex, (Formula presented) will asymptotically diverge or vanish depending on the sign of its imaginary part; Arbó, D., Miraglia, J.E., (1998) Phys. Rev. A, 58, p. 2970
  • Vager, Z., Gemmell, D.S., (1976) Phys. Rev. Lett., 37, p. 1352
  • Salin, A., Arnau, A., Echenique, P.M., Zaremba, E., (1999) Phys. Rev. B, 59, p. 2537
  • Reinhold, C.O., Falcón, C.A., Miraglia, J.E., (1987) J. Phys. B, 20, p. 3737
  • The plotted values (denoted by triangles in Fig. 44) were extracted from the experiments of Refs. 18 19 extrapolating the result for antiprotons and interpolating the results for protons, obtaining the values 0.22 and 0.083, respectively; Lifschitz, A.F., Arista, N.R., (1998) Phys. Rev. A, 58, p. 2168

Citas:

---------- APA ----------
(2003) . Coulomb Lindhard approximation: Nonlinear excitation effects for fast ions penetrating a free-electron gas. Physical Review A - Atomic, Molecular, and Optical Physics, 68(2), 7.
http://dx.doi.org/10.1103/PhysRevA.68.022904
---------- CHICAGO ----------
Miraglia, J.E. "Coulomb Lindhard approximation: Nonlinear excitation effects for fast ions penetrating a free-electron gas" . Physical Review A - Atomic, Molecular, and Optical Physics 68, no. 2 (2003) : 7.
http://dx.doi.org/10.1103/PhysRevA.68.022904
---------- MLA ----------
Miraglia, J.E. "Coulomb Lindhard approximation: Nonlinear excitation effects for fast ions penetrating a free-electron gas" . Physical Review A - Atomic, Molecular, and Optical Physics, vol. 68, no. 2, 2003, pp. 7.
http://dx.doi.org/10.1103/PhysRevA.68.022904
---------- VANCOUVER ----------
Miraglia, J.E. Coulomb Lindhard approximation: Nonlinear excitation effects for fast ions penetrating a free-electron gas. Phys Rev A. 2003;68(2):7.
http://dx.doi.org/10.1103/PhysRevA.68.022904