Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Several quantum proper time derivatives are obtained from the Beck one in the usual framework of relativistic quantum mechanics (spin-1/2 case). The scalar Hamiltonians of these derivatives should be thought of as the conjugate variables of the proper time. Then, the Hamiltonians would play the role of mass operators, suggesting the formulation of an adequate extended indefinite mass framework. We propose and briefly develop the framework corresponding to the Feynman parametrization of the Dirac equation. In such a case we derive the other parametrizations known in the literature, linking the extension of the different proposals of quantum proper time derivatives again. © 1995 The American Physical Society.

Registro:

Documento: Artículo
Título:Proper time derivatives in quantum mechanics
Autor:Aparicio, J.P.; Gaioli, F.H.; Garcia Alvarez, E.T.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Año:1995
Volumen:51
Número:1
Página de inicio:96
Página de fin:103
DOI: http://dx.doi.org/10.1103/PhysRevA.51.96
Título revista:Physical Review A
ISSN:10502947
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v51_n1_p96_Aparicio

Referencias:

  • Enatsu, H., Relativistic quantum mechanics and mass-quantization (1956) Il Nuovo Cimento, 3, p. 526
  • Enatsu, H., Relativistic Hamiltonian Formalism in Quantum Field Theory and Micro-Noncausality (1963) Progress of Theoretical Physics, 30, p. 236
  • Enatsu, H., Kawaguchi, S., Covariant Hamiltonian formalism for quantized fields and the hydrogen mass levels (1975) Il Nuovo Cimento A, 27, p. 458
  • Enatsu, H., Takenaka, A., Okazaki, M., Micrononcausal euclidean wave functions for hadrons (1978) Il Nuovo Cimento A, 43, p. 575
  • An exhaustive review of the localization problem up to the 1970s can be found in A.J. Kálnay, in Problems in the Foundations of Physics, edited by M. Bunge (Springer Verlag, Berlin, 1971); Johnson, J.E., (1969) Phys. Rev., 181, p. 1775
  • Stückelberg, E.C.G., (1941) Helv. Phys. Acta, 14, p. 322
  • Stückelberg, E.C.G., (1941) Helv. Phys. Acta, 14, p. 558
  • Stückelberg, E.C.G., (1942) Helv. Phys. Acta, 15, p. 23
  • J.P. Aparicio, F.H. Gaioli, and E.T. Garcia Alvarez (unpublished); J. P. Aparicio, F.H. Gaioli, and E.T. Garcia Alvarez, An. Asoc. Fis. Argent. (to be published); Fanchi, J.R., (1980) Am. J. Phys., 49, p. 850
  • Fanchi, J.R., Resolution of the Klein paradox for spin-1/2 particles (1981) Foundations of Physics, 11, p. 493
  • Thaller, B., Proper-time quantum-mechanics and the Klein paradox (1981) Lettere Al Nuovo Cimento Series 2, 31, p. 439
  • Davidon, W.C., Proper-Time Electron Formalism (1955) Physical Review, 97, p. 1131
  • Davidon, W.C., Proper-Time Quantum Electrodynamics (1955) Physical Review, 97, p. 1139
  • Teitelboim, C., Proper time approach to the quantization of the gravitational field (1980) Physics Letters B, 96, p. 77
  • Barut, A.O., Combining relativity and quantum mechanics: Schrödinger's interpretation of ψ (1988) Foundations of Physics, 18, p. 95
  • Stephens, C.R., Non-perturbative background field calculations (1988) Annals of Physics, 181, p. 120
  • Dirac, P.A.M., (1926) Proc. R. Soc. London, Ser. A, 110, p. 405
  • Dirac, P.A.M., (1926) Proc. R. Soc. London, Ser. A, 110, p. 661
  • Dirac, P.A.M., The Quantum Theory of the Electron (1928) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 117, p. 610
  • Fock, V., (1937) Phys. Z. Sowjetunion, 12, p. 404
  • Beck, G., (1942) Rev. Fac. Cienc. Univ. Coimbra, 10, p. 66
  • Nambu, Y., The Use of the Proper Time in Quantum Electrodynamics I (1950) Progress of Theoretical Physics, 5, p. 82
  • Feynman, R.P., Mathematical Formulation of the Quantum Theory of Electromagnetic Interaction (1950) Physical Review, 80, p. 440. , (in this work Feynman discussed only the Fock parametrization);
  • Feynman, R.P., An Operator Calculus Having Applications in Quantum Electrodynamics (1951) Physical Review, 84, p. 108
  • Schweber, S.S., Feynman and the visualization of space-time processes (1986) Reviews of Modern Physics, 58, p. 449
  • Schwinger, J., On Gauge Invariance and Vacuum Polarization (1951) Physical Review, 82, p. 664
  • Szamosi, G., A covariant formulation of quantum mechanics — I (1961) Il Nuovo Cimento, 20, p. 1090
  • Szamosi, G., Dynamics of spinning particles in classical and quantum theory (1963) Il Nuovo Cimento, 29, p. 677
  • Grossmann, Z., Peres, A., Classical Theory of the Dirac Electron (1963) Physical Review, 132, p. 2346
  • Corben, H.C., Spin in Classical and Quantum Theory (1961) Physical Review, 121, p. 1833
  • Fradkin, D.M., Good, R.H., Electron Polarization Operators (1961) Reviews of Modern Physics, 33, p. 343
  • Cooke, J.H., Proper-Time Formulation of Quantum Mechanics (1968) Physical Review, 166, p. 1293
  • Moses, H.E., Covariant space-time operators, infinite-component wavefunctions, and proper-time Schrödinger equations (1969) Annals of Physics, 52, p. 444
  • Bunge, M., Kálnay, A.J., A Covariant Position Operator for the Relativistic Electron (1969) Progress of Theoretical Physics, 42, p. 1445
  • Johnson, J.E., Proper-Time Quantum Mechanics. II (1971) Physical Review D, 3, p. 1735
  • Johnson, J.E., Chang, K.K., Exact diagonalization of the Dirac Hamiltonian in an external field (1974) Physical Review D, 10, p. 2421
  • Notice that in these works the authors do not restrict the states onto the positive mass subspace as in Ref. citejohnson; Aghassi, J.J., Roman, P., Santilli, R.M., New Dynamical Group for the Relativistic Quantum Mechanics of Elementary Particles (1970) Physical Review D, 1, p. 2753
  • Aghassi, J.J., Roman, P., Santilli, R.M., Relation of the Inhomogeneous de Sitter Group to the Quantum Mechanics of Elementary Particles (1970) Journal of Mathematical Physics, 11, p. 2297. , Further developments can be found in
  • Roman, P., Aghassi, J.J., Huddleston, P.L., Relativistic dynamical symmetries and dilatations (1972) Journal of Mathematical Physics, 13, p. 1852
  • Roman, P., Leveille, J.P., Relativistic quantum mechanics and local gauge symmetry (1974) Journal of Mathematical Physics, 15, p. 2053
  • Horwitz, L.P., Piron, C., (1973) Helv. Phys. Acta, 46, p. 316
  • Horwitz, L.P., Lavie, Y., Scattering theory in relativistic quantum mechanics (1982) Physical Review D, 26, p. 819
  • Arshansky, R., Horwitz, L.P., Lavie, Y., Particles vs. events: The concatenated structure of world lines in relativistic quantum mechanics (1983) Foundations of Physics, 13, p. 1167
  • Arshansky, R., Horwitz, L.P., The quantum relativistic two-body bound state. I. The spectrum (1989) Journal of Mathematical Physics, 30, p. 66
  • Horwitz, L.P., Piron, C., Reuse, F., (1975) Helv. Phys. Acta, 48, p. 546. , The spin case 1/2 case in RD was considered by
  • Piron, C., Reuse, F., (1978) Helv. Phys. Acta, 51, p. 146
  • Reuse, F., (1978) Helv. Phys. Acta, 51, p. 157
  • Horwitz, L.P., Arshansky, R., On relativistic quantum theory for particles with spin1/2 (1982) Journal of Physics A: Mathematical and General, 15, p. L659
  • Collins, R.E., Fanchi, J.R., Relativistic quantum mechanics: A space-time formalism for spin-zero particles (1978) Il Nuovo Cimento A, 48, p. 314
  • Fanchi, J.R., A generalized quantum field theory (1979) Physical Review D, 20, p. 3108
  • Fanchi, J.R., Wilson, W.J., (1983) Phys. Rev. D, 13, p. 571
  • Fanchi, J.R., Parametrizing relativistic quantum mechanics (1986) Physical Review A, 34, p. 1677
  • Fanchi, J.R., 4-space formulation of field equations for multicomponent eigenfunctions (1981) Journal of Mathematical Physics, 22, p. 794. , The equivalence between RD and FSF for arbitrary spin was demonstrated by
  • Hostler, L., Quantum field theory of particles of indefinite mass. I (1980) Journal of Mathematical Physics, 21, p. 2461
  • Henneaux, M., Teitelboim, C., Relativistic quantum mechanics of supersymmetric particles (1982) Annals of Physics, 143, p. 127
  • Barut, A.O., Zanghi, N., Classical Model of the Dirac Electron (1984) Physical Review Letters, 52, p. 2009
  • Barut, A.O., Thacker, W., (1985) Phys. Rev. D, 31
  • Kyprianidis, A., (1987) Phys. Rep., 115, p. 2
  • and references cited therein; Droz Vincent, P., Proper time and evolution in quantum mechanics (1988) Physics Letters A, 134, p. 147
  • Aparicio, J.P., (1991) An. Asoc. Fis. Argent., 3, p. 46
  • Aparicio, J.P., (1991) An. Asoc. Fis. Argent., 3, p. 51
  • Sonego, S., Quasiprobabilities and explicitly covariant relativistic quantum theory (1991) Physical Review A, 44, p. 5369
  • Kálnay, A.J., Mac Cotrina, E., On Proper Time and Localization for the Quantum Relativistic Electron (1969) Progress of Theoretical Physics, 42, p. 1422. , The proper time thought as a quantum operator has also been considered. See, e.g
  • Later on, the first order parametrized Dirac equation was also considered by Schwinger;; Schwinger, J., Magnetic charge and the charge quantization condition (1975) Physical Review D, 12, p. 3105
  • A. Messiah, Mécanique Quantique (Dunod, Paris, 1964), Chap. 20; J.P. Aparicio, F.H. Gaioli, E.T. Garcia Alvarez, and A.J. Kálnay (unpublished); see also Ref. citebk and the second work of Ref. citebarut; Bhabha, H.C., Corben, H.C., General Classical Theory of Spinning Particles in a Maxwell Field (1941) Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 178, p. 273
  • Corben, H.C., Spin precession in classical relativistic mechanics (1961) Il Nuovo Cimento, 20, p. 529
  • Corben, H.C., Stehle, P., (1960) Classical Mechanics, , Wiley, New York, Chap. 16
  • Gaioli, F.H., Garcia Alvarez, E.T., ; Yaffe, L.G., LargeNlimits as classical mechanics (1982) Reviews of Modern Physics, 54, p. 407
  • The position Xμ has been considered, among others, by R.P. Feynman, Quantum Electrodynamics (Benjamin, New York, 1961), Lecture 11; Bunge, M., A picture of the electron (1955) Il Nuovo Cimento, 1, p. 977
  • Giambiagi, J.J., Analogy between lorentz and Foldy-Wouthuysen transformation (1960) Il Nuovo Cimento, 16, p. 202
  • and Refs. citeqed, citeszamosi, and citebk; Hilgevoord, J., Wouthuysen, S.S., On the spin angular momentum of the Dirac particle (1963) Nuclear Physics, 40, p. 1
  • Fradkin, M., Jr., Good, H., Tensor operator for electron polarization (1961) Il Nuovo Cimento, 22, p. 643. , see also D., and R
  • Kolsrud, M., Covariant and hermitian semi-classical limit of quantum dynamical equations for spin-1/2 particles (1965) Il Nuovo Cimento, 39, p. 504
  • Michel, L., Wightman, A.S., (1955) Phys. Rev., 98, p. 1190
  • Rafanelli, K., Schiller, R., Classical Motions of Spin-½ Particles (1964) Physical Review, 135, p. B279
  • Lubánski, J.K., (1942) Physica, 9, p. 310. , More precisely, Bargmann and Wigner used the Pauli Lubánski [cf., ] polarization -1 / 4 εμνρλ σνρ pλ to characterize the representation of the Poincaré group
  • Bargmann, V., Wigner, E.P., Group Theoretical Discussion of Relativistic Wave Equations (1948) Proceedings of the National Academy of Sciences, 34, p. 211
  • Rumpf, H., (1979) Gen. Rel. Grav., 10, p. 509. , The ``scalar product'' ( refpe) was also considered by
  • and a similar definition can be found in Ref. citehete; An indefinite metric with similar formal characteristics has been worked by Fesbach Villars in the standard RQM for the Klein Gordon equation;; Fesbach, H., Villars, F., (1958) Rev. Mod. Phys., 30, p. 24
  • In another context, the indefinite metrics are well known in the literature; see, e.g., G. Barton, Introduction to Advanced Field Theory (Wiley, New York, 1963), Chap. 12; Heinz, U., A relativistic colored spinning particle in an external color field (1984) Physics Letters B, 144 B, p. 228. , Some applications for strong interactions were treated by
  • Our results can also be extrapolated to this case; Aparicio, J.P., Gaioli, F.H., Garcia Alvarez, E.T., ; Foldy, L., The Electromagnetic Properties of Dirac Particles (1952) Physical Review, 87, p. 688
  • Foldy, L., Neutron-Electron Interaction (1958) Reviews of Modern Physics, 30, p. 471
  • Salzman, G., Neutron-Electron Interaction (1955) Physical Review, 99, p. 973
  • Aparicio, J.P., (1991) An. Asoc. Fis. Argent., 3, p. 83
  • Barker, W.A., Chraplyvy, Z.V., Conversion of an Amplified Dirac Equation to an Approximately Relativistic Form (1953) Physical Review, 89, p. 446
  • Bazeia, D., Classical particles with spin and anomalous moments (1980) Lettere Al Nuovo Cimento Series 2, 29, p. 228
  • Feinberg, G., Effects of an Electric Dipole Moment of the Electron on the Hydrogen Energy Levels (1958) Physical Review, 112, p. 1637
  • Salpeter, E.E., (1958) Phys. Rev., 112, p. 1643

Citas:

---------- APA ----------
Aparicio, J.P., Gaioli, F.H. & Garcia Alvarez, E.T. (1995) . Proper time derivatives in quantum mechanics. Physical Review A, 51(1), 96-103.
http://dx.doi.org/10.1103/PhysRevA.51.96
---------- CHICAGO ----------
Aparicio, J.P., Gaioli, F.H., Garcia Alvarez, E.T. "Proper time derivatives in quantum mechanics" . Physical Review A 51, no. 1 (1995) : 96-103.
http://dx.doi.org/10.1103/PhysRevA.51.96
---------- MLA ----------
Aparicio, J.P., Gaioli, F.H., Garcia Alvarez, E.T. "Proper time derivatives in quantum mechanics" . Physical Review A, vol. 51, no. 1, 1995, pp. 96-103.
http://dx.doi.org/10.1103/PhysRevA.51.96
---------- VANCOUVER ----------
Aparicio, J.P., Gaioli, F.H., Garcia Alvarez, E.T. Proper time derivatives in quantum mechanics. 1995;51(1):96-103.
http://dx.doi.org/10.1103/PhysRevA.51.96