Abstract:
The interaction Hamiltonian for the degenerate parametric amplifier leads to an eigenvalue equation which can be solved. The solution is used to construct the propagation kernel for the state vectors. We can then follow the evolution of the squeezed variable and its conjugate one. Also the changes of entropies during the process can be followed without difficulties. © 1993 The American Physical Society.
Referencias:
- Walls, D.F., (1983) Nature, 306, p. 141
- B. Yurke, P.G. Kaminsky, E.A. Whitakker, A.D. Smith, A.H. Silver, and R.W. Simon, in Squeezed and Non classical Light, Vol. 190 of NATO Advanced Study Institute, Series B: Physics, edited by P. Tombesi and E.R. Pike (Plenum, New York, 1989); (1987) J. Opt. Soc. Am. B, 4, p. 10
- Squeezed and Non classical Light, Vol. 190 NATO Advanced Study Institute, Series B: Physics, edited by P. Tombesi and E.R. Pike (Plenum, New York, 1989); Raiford, T., (1970) Phys. Rev. A, 2, p. 1541. , M
- Raiford, T., (1974) Phys. Rev. A, 9, p. 2060
- Mista, L., Perinova, V., Perina, J., Braunerova, Z., (1977) Acta Phys. Pol. A, 51, p. 739
- Cohen Tannoudji, C., Dupont Roc, J., Grynberg, G., (1990) Photons and Atoms: Introduction to Quantum Electrodynamics, , Wiley, New York
- C.G. Bollini and J.J. Giambiagi, J. Tiomno Festschrift (World Scientific, Singapore, 1992); Hong, C.K., Mandel, L., (1985) Phys. Rev. Lett., 54, p. 323
- Gong, J.J., Aravind, P.K., (1990) Coherence and Quantum Optics, , edited by, J.H. Eberly, et al., Plenum, New York
- Gelfand, I.M., Shilov, G.E., (1964) Generalized Functions, 1, p. 170. , Academic, New York
- I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1965), p. 937; Caves, C.M., Thorne, K.S., Drever, R.W.P., Sandberg, V.D., Zimmermann, M., (1980) Rev. Mod. Phys., 52, p. 341
- Div, B., Guthmann, C., Lederer, D., Roulet, B., (1989) Physique Statistique, , Hermann, Paris
Citas:
---------- APA ----------
Bollini, C.G. & Oxman, L.E.
(1993)
. Shannon entropy and the eigenstates of the single-mode squeeze operator. Physical Review A, 47(3), 2339-2343.
http://dx.doi.org/10.1103/PhysRevA.47.2339---------- CHICAGO ----------
Bollini, C.G., Oxman, L.E.
"Shannon entropy and the eigenstates of the single-mode squeeze operator"
. Physical Review A 47, no. 3
(1993) : 2339-2343.
http://dx.doi.org/10.1103/PhysRevA.47.2339---------- MLA ----------
Bollini, C.G., Oxman, L.E.
"Shannon entropy and the eigenstates of the single-mode squeeze operator"
. Physical Review A, vol. 47, no. 3, 1993, pp. 2339-2343.
http://dx.doi.org/10.1103/PhysRevA.47.2339---------- VANCOUVER ----------
Bollini, C.G., Oxman, L.E. Shannon entropy and the eigenstates of the single-mode squeeze operator. 1993;47(3):2339-2343.
http://dx.doi.org/10.1103/PhysRevA.47.2339