La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


We analyze the irreversible behavior of a quantum harmonic oscillator immersed in an arbitrary thermal reservoir. For the fully coupled (FC) model, i.e., the coupling between subsystems linear in the coordinate of the oscillator, we construct a generalized master equation for the reduced density operator of the oscillator. We apply the rotating-wave approximation (RWA) and investigate its connection with the FC master equation. By means of the Wigner distribution, we obtain the corresponding Fokker-Planck equations in the semiclassical representation. We find that, when the RWA is not imposed, the correct classical limit is obtained (Kramers equation). Then, we establish the conditions for the equivalence between the FC Fokker-Planck equation and that obtained in the RWA. Quantum maps for a kicked oscillator immersed in a heat bath are obtained in both cases. These maps are studied in the classical and semiclassical limits, and it is shown that they coincide for low kicking frequency compared to the damping rate. © 1992 The American Physical Society.


Documento: Artículo
Título:Asymptotic regime of quantal stochastic and dissipative motion
Autor:Despsito, M.A.; Gatica, S.M.; Hernndez, E.S.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Página de inicio:3234
Página de fin:3242
Título revista:Physical Review A


  • Haken, H., (1970) Laser Theory, , edited by, S. Flügge, Encyclopedia of Physics Vol. XXV/2C, Springer, Berlin
  • Louisell, W.H., (1973) Quantum Statistical Properties of Radiation, , Wiley, New York
  • Haake, F., Statistical treatment of open systems by generalized master equations (1973) Springer Tracts Mod. Phys., 66, p. 98
  • Schenzle, A., (1989) J. Stat. Phys., 54, p. 1243
  • Nitzan, A., Jortner, J., Vibrational relaxation of a molecule in a dense medium (1973) Molecular Physics, 25, p. 713
  • Aslangul, C., Pottier, N., Saint James, D., (1986) J. Phys. (Paris), 47, p. 1671
  • Agarwal, G.S., Quantum statistical theories of spontaneous emission and their relation to other approaches (1974) Springer Tracts Mod. Phys., 70, p. 1
  • Caldeira, A.O., Leggett, A.J., (1983) Ann. Phys., 149, p. 374
  • Lindenberg, K., West, B., (1984) Phys. Rev. A, 30, p. 568
  • Haake, F., Reibold, R., (1985) Phys. Rev. A, 32, p. 2462
  • Riseborough, P.S., Hanggi, P., Weiss, U., (1985) Phys. Rev. A, 31, p. 471
  • Ford, W., Lewis, J.T., O'Connell, R.F., (1988) Phys. Rev. A, 37, p. 4419. , G
  • Hernández, E.S., Dorso, C.O., Quantal Brownian motion in stationary and nonstationary fermionic reservoirs (1984) Physical Review C, 29, p. 1510
  • Dorso, C.O., Hernández, E.S., (1984) Phys. Rev. C, 29, p. 1523
  • Hernández, E.S., Kievsky, A., (1985) Phys. Rev. A, 32, p. 1810
  • Cataldo, H.M., Hernández, E.S., Dorso, C.O., (1987) Physica A, 142, p. 498
  • Despósito, M.A., Hernández, E.S., (1988) Physica A, 18, p. 267
  • van Kampen, N.G., (1981) Stochastic Processes in Physics and Chemistry, , North Holland, Amsterdam
  • Risken, H., (1989) The Fokker Planck Equation, , Springer Verlag, Berlin
  • Graham, R., Tél, T., (1985) Z. Phys. B, 60, p. 127
  • Cerdeira, H., Furuya, K., Huberman, B., (1988) Phys. Rev. Lett., 61, p. 2511
  • Nakajima, S., On Quantum Theory of Transport Phenomena (1958) Progress of Theoretical Physics, 20, p. 948
  • Zwanzig, R., (1960) J. Chem. Phys., 33, p. 1338
  • Grabert, H., (1982) Springer Tracts Mod. Phys., 95, p. 1
  • Li, K.H., (1986) Phys. Rep., 134, p. 1
  • M.A. Despósito, Ph.D. thesis, University of Buenos Aires, 1992 (unpublished); Ford, W., Kac, H., Mazur, P., (1965) J. Math. Phys., 6, p. 504. , It is not our purpose here to establish the conditions that lead to the validity of a Markovian approximation. See, for example, G
  • and Ref. citeLin84; Note that the RWA on Eq. ( refEmGGd) as given by Eq. ( refemasAL), is different from the master equation derived from the so called RWA coupling Hamiltonian (see, for example, Ref. onlineciteAg74). However, it may be shown that both master equations coincide for an independent oscillator heat bath; Dorso, C.O., Hernández, E.S., (1982) Phys. Rev. C, 26, p. 528
  • Wigner, E.P., (1932) Phys. Rev., 40, p. 249
  • Hillery, M., O'Connell, R.F., Scully, M.O., Wigner, E.P., (1984) Phys. Rep., 106, p. 106
  • Hernández, E.S., Cataldo, H.M., Semiclassical description of harmonic quantal Brownian motion (1989) Physical Review A, 39, p. 2034
  • R.L. Stratonovich,Topics in the Theory of Random Noise (Gordon & Breach, New York, 1967), Vol. 1; H. Haken, Synergetics, an Introduction, edited by H. Haken, Springer Series in Synergetics Vol. 1 (Springer, Berlin, 1977); Haake, F., Kús, M., Scharf, R., (1987) Z. Phys. B, 65, p. 381
  • Berry, M.V., Balazs, N.L., Tabor, M., Voros, A., (1979) Ann. Phys., 122, p. 26
  • (1965) Handbook of Mathematical Functions, , edited by, M. Abramowitz, I. Stegun, Dover, New York


---------- APA ----------
Despsito, M.A., Gatica, S.M. & Hernndez, E.S. (1992) . Asymptotic regime of quantal stochastic and dissipative motion. Physical Review A, 46(6), 3234-3242.
---------- CHICAGO ----------
Despsito, M.A., Gatica, S.M., Hernndez, E.S. "Asymptotic regime of quantal stochastic and dissipative motion" . Physical Review A 46, no. 6 (1992) : 3234-3242.
---------- MLA ----------
Despsito, M.A., Gatica, S.M., Hernndez, E.S. "Asymptotic regime of quantal stochastic and dissipative motion" . Physical Review A, vol. 46, no. 6, 1992, pp. 3234-3242.
---------- VANCOUVER ----------
Despsito, M.A., Gatica, S.M., Hernndez, E.S. Asymptotic regime of quantal stochastic and dissipative motion. 1992;46(6):3234-3242.