Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

By means of the Wigner transformation procedure, we extract a generalized Fokker-Planck equation that represents the semiclassical version of the quantal master equation for Brownian harmonic motion. The Fokker-Planck equation and its solutions are investigated both in the Markovian and in the non-Markovian regimes. The relations between semiclassical and classical Brownian motion of harmonic oscillators are analyzed with special emphasis on the high-friction limit. © 1989 The American Physical Society.

Registro:

Documento: Artículo
Título:Semiclassical description of harmonic quantal Brownian motion
Autor:HernAndez, E.S.; Cataldo, H.M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Año:1989
Volumen:39
Número:4
Página de inicio:2034
Página de fin:2041
DOI: http://dx.doi.org/10.1103/PhysRevA.39.2034
Título revista:Physical Review A
ISSN:10502947
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10502947_v39_n4_p2034_HernAndez

Referencias:

  • Einstein, A., (1905) Ann. Phys., 17, p. 549
  • Einstein, A., (1906) Ann. Phys., 19, p. 371
  • Risken, H., (1984) The Fokker-Planck Equation, , Springer, Berlin
  • Senitzky, I.R., (1960) Phys. Rev., 119, p. 670
  • Schwinger, J., (1961) J. Math. Phys., 2, p. 407
  • Ford, G., Kac, M., Mazur, P., (1965) J. Math. Phys., 6, p. 504
  • Benguria, R., Kac, M., (1981) Phys. Rev. Lett., 46, p. 1
  • Caldeira, A.O., Leggett, A.J., (1981) Phys. Rev. Lett., 46, p. 211
  • Bray, A.J., Moore, M.A., (1982) Phys. Rev. Lett., 49, p. 1545
  • Maassen, H., (1984) J. Stat. Phys., 34, p. 239
  • Haken, H., (1970) Handb. Phys., 15, p. 2c
  • Louisell, W.H., (1973) Quantum Statistical Properties of Radiation, , Wiley, New York
  • Haake, F., (1973) Laser, Vol. 66 of Springer Tracts in Modern Physics, p. 98. , Springer, Berlin
  • Whitney, K.G., Scully, M.O., (1972) Progress in Optics, , edited by, E. Wolf, North-Holland, Amsterdam, Vol. 10
  • Agarwal, G.S., (1974) Quantum Optics, Vol. 70 of Springer Tracts in Modern Physics, , Springer, Berlin
  • Hernández, E.S., Dorso, C.O., Quantal Brownian motion in stationary and nonstationary fermionic reservoirs (1984) Physical Review C, 29, p. 1510
  • Dorso, C.O., Hernández, E.S., (1984) Phys. Rev. C, 29, p. 1523
  • de la Mota, V., Dorso, C.O., Hernández, E.S., (1984) Phys. Lett., 143 B, p. 279
  • Hernández, E.S., Dorso, C.O., (1984) Phys. Rev. C, 30, p. 1711
  • Kievsky, A., Hernández, E.S., (1987) Z. Phys. A, 328, p. 151
  • Wigner, E., (1932) Phys. Rev., 40, p. 749
  • Hillery, M., O'Connell, R.F., Scully, M.O., Wigner, E.P., (1984) Phys. Rep., 106, p. 121
  • Balazs, N.L., Jennings, B.K., (1984) Phys. Rep., 104, p. 347
  • Glauber, R.J., (1963) Phys. Rev., 131, p. 2766
  • Glauber, R.J., (1963) Phys. Rev. Lett., 10, p. 84
  • Sudarshan, E.C.G., (1963) Phys. Rev. Lett., 10, p. 277
  • Drummond, P.D., Gardiner, C.W., Walls, D.F., (1981) Phys. Rev. A, 24, p. 914
  • For instance (Ref. 21), the P representation of a pure n-phonon state contains derivatives of δ functions up to order 2n; Bonifacio, R., Haake, F., (1967) Z. Phys., 200, p. 526
  • Hernández, E.S., Cataldo, H.M., (1987) Phys. Lett. A, 124, p. 489
  • Cataldo, H.M., Hernández, E.S., (1988) J. Stat. Phys., 50, p. 383
  • Cataldo, H.M., Hernández, E.S., (1988) J. Stat. Phys., 53, p. 673
  • Haake, F., (1969) Z. Phys., 223, p. 364
  • Groenewold, H.J., (1946) Physica, 12, p. 405
  • Baker, G.A., (1958) Phys. Rev., 109, p. 2198
  • (1972) Handbook of Mathematical Functions, , edited by, M. Abramowitz, I. A. Stegun, Dover, New York
  • Imre, K., Ozizmir, E., Rosenbaum, M., Zweifel, P., (1967) J. Math. Phys., 8, p. 1097
  • Hörmander, L., The weyl calculus of pseudo-differential operators (1979) Communications on Pure and Applied Mathematics, 32, p. 359
  • Recalling (2.13c), we may verify from Eq. (2.17) that the solution through Glauber's P function becomes singular for β -> 0. This singularity arises from the fact that all the eigenvectors of the master equation have, at zero temperature, an infinite number of vanishing components (Ref. 29) and therefore they do not possess a well-behaved associated P function (Ref. 23); The spectrum (2.21) was reported earlier in Ref. 28. In addition, it arises from that paper that the inclusion of nondiagonal elements of the density matrix to the dynamics adds all positive half-integers to the spectrum of eigenfrequencies. However, we must remark that these frequencies do not appear in the dynamics when one focuses upon a diagonal initial density, such as a pure n-phonon state (Ref. 31); In expresssion (4.11) we have assumed that the poles λ ni are single; later in this section, we will study a physical situation that fulfills this condition; Loupias, G., Miracle-Sole, S., (1967) Ann. Inst. Henry Poincare, 6, p. 39
  • Willis, C.R., Picard, R.H., (1974) Phys. Rev. A, 9, p. 1343
  • Bonifacio, R., Schwendimann, P., Haake, F., (1971) Phys. Rev. A, 4, p. 854
  • Haake, F., (1969) Z. Phys., 223, p. 353
  • Under certain conditions, non-Markovian CBM can be described by time-convolutionless FPE's;; Van Kampen, N.G., (1976) Phys. Rep., 24 C, p. 171
  • San Miguel, M., Sancho, J.M., (1980) Phys. Lett., 76 A, p. 97
  • Lindenberg, K., West, B.J., (1984) Physica, 128 A, p. 25
  • Arnold, L., (1974) Stochastic Differential Equations, , Wiley, New York

Citas:

---------- APA ----------
HernAndez, E.S. & Cataldo, H.M. (1989) . Semiclassical description of harmonic quantal Brownian motion. Physical Review A, 39(4), 2034-2041.
http://dx.doi.org/10.1103/PhysRevA.39.2034
---------- CHICAGO ----------
HernAndez, E.S., Cataldo, H.M. "Semiclassical description of harmonic quantal Brownian motion" . Physical Review A 39, no. 4 (1989) : 2034-2041.
http://dx.doi.org/10.1103/PhysRevA.39.2034
---------- MLA ----------
HernAndez, E.S., Cataldo, H.M. "Semiclassical description of harmonic quantal Brownian motion" . Physical Review A, vol. 39, no. 4, 1989, pp. 2034-2041.
http://dx.doi.org/10.1103/PhysRevA.39.2034
---------- VANCOUVER ----------
HernAndez, E.S., Cataldo, H.M. Semiclassical description of harmonic quantal Brownian motion. 1989;39(4):2034-2041.
http://dx.doi.org/10.1103/PhysRevA.39.2034