Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The cAMP dependent protein kinase (PKA) is a key enzyme involved in many cellular processes in eukaryotes. In mammals, the regulatory (R) subunit localises the catalytic (C) subunit to specific subcellular sites through the interaction of its N-terminal homodimeric docking and dimerization (D/D) domain with specific scaffold proteins. The structure of the D/D domain has been extensively studied in mammals, but there is little information from non-mammalian species. In this work, we present the structural analysis of the D/D domain of Bcy1, the R subunit of PKA from Saccharomyces cerevisiae. Using chemical crosslinking experiments and static light scattering measurements we found that this R subunit forms a tetramer in solution, unlike its dimeric mammalian counterparts. We determined that the D/D domain is responsible for this unusual oligomeric state. Using biophysical techniques including size-exclusion chromatography, sucrose gradient sedimentation, small angle X-ray scattering (SAXS), and circular dichroism, we performed a detailed structural characterization of the tetrameric D/D domain of Bcy1. We used homology modelling in combination with computer-aided docking methods and ab initio SAXS modelling methods to develop structural models for the D/D domain tetramer. The models consist of two homodimers with a canonical D/D domain fold that generate a dimer of dimers with novel putative interaction surfaces. These findings indicate that the oligomerization states of PKA R subunits is more diverse than previously thought, and suggest that this might allow some forms of PKA to interact with a wide range of intracellular partners. © 2015 Elsevier Inc.

Registro:

Documento: Artículo
Título:The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain
Autor:González Bardeci, N.; Caramelo, J.J.; Blumenthal, D.K.; Rinaldi, J.; Rossi, S.; Moreno, S.
Filiación:Departamento de Química Biológica, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, C1405BWE, Argentina
Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, United States
Palabras clave:Bcy1; D/D domain; Protein kinase A; Regulatory subunit; Saccharomyces cerevisiae; Bcy1 protein; cyclic AMP dependent protein kinase; homodimer; tetramer; unclassified drug; Bcy1 protein, S cerevisiae; cyclic AMP dependent protein kinase; protein subunit; Saccharomyces cerevisiae protein; ab initio calculation; amino terminal sequence; Article; circular dichroism; cross linking; docking and dimerization domain; hydrodynamics; light scattering; molecular docking; nonhuman; oligomerization; priority journal; protein domain; protein secondary structure; Saccharomyces cerevisiae; sedimentation; size exclusion chromatography; X ray crystallography; chemistry; genetics; metabolism; molecular model; protein multimerization; protein subunit; protein tertiary structure; small angle scattering; X ray diffraction; Chromatography, Gel; Circular Dichroism; Cyclic AMP-Dependent Protein Kinases; Models, Molecular; Protein Multimerization; Protein Structure, Tertiary; Protein Subunits; Saccharomyces cerevisiae Proteins; Scattering, Small Angle; X-Ray Diffraction
Año:2016
Volumen:193
Número:2
Página de inicio:141
Página de fin:154
DOI: http://dx.doi.org/10.1016/j.jsb.2015.12.001
Título revista:Journal of Structural Biology
Título revista abreviado:J. Struct. Biol.
ISSN:10478477
CODEN:JSBIE
CAS:cyclic AMP dependent protein kinase; Bcy1 protein, S cerevisiae; Cyclic AMP-Dependent Protein Kinases; Protein Subunits; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10478477_v193_n2_p141_GonzalezBardeci

Referencias:

  • Angelo, R., Rubin, C.S., Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans (1998) J. Biol. Chem., 273, pp. 14633-14643
  • Banky, P., Huang, L.J., Taylor, S.S., Dimerization/docking domain of the type Ialpha regulatory subunit of cAMP-dependent protein kinase. Requirements for dimerization and docking are distinct but overlapping (1998) J. Biol. Chem., 273, pp. 35048-35055
  • Banky, P., Roy, M., Newlon, M.G., Morikis, D., Haste, N.M., Taylor, S.S., Jennings, P.A., Related protein-protein interaction modules present drastically different surface topographies despite a conserved helical platform (2003) J. Mol. Biol., 330, pp. 1117-1129
  • Benkert, P., Kunzli, M., Schwede, T., QMEAN server for protein model quality estimation (2009) Nucleic Acids Res., 37, pp. W510-514
  • Boettcher, A.J., Wu, J., Kim, C., Yang, J., Bruystens, J., Cheung, N., Pennypacker, J.K., Taylor, S.S., Realizing the allosteric potential of the tetrameric protein kinase A RIalpha holoenzyme (2011) Structure, 19, pp. 265-276
  • Burgers, P.P., Ma, Y., Margarucci, L., Mackey, M., van der Heyden, M.A., Ellisman, M., Scholten, A., Heck, A.J., A small novel A-kinase anchoring protein (AKAP) that localizes specifically protein kinase A-regulatory subunit I (PKA-RI) to the plasma membrane (2012) J. Biol. Chem., 287, pp. 43789-43797
  • Canaves, J.M., Taylor, S.S., Classification and phylogenetic analysis of the cAMP-dependent protein kinase regulatory subunit family (2002) J. Mol. Evol., 54, pp. 17-29
  • Carlson, G.L., Nelson, D.L., The 44-kDa regulatory subunit of the Paramecium cAMP-dependent protein kinase lacks a dimerization domain and may have a unique autophosphorylation site sequence (1996) J. Eukaryot. Microbiol., 43, pp. 347-356
  • Cheng, J., Randall, A.Z., Sweredoski, M.J., Baldi, P., SCRATCH: a protein structure and structural feature prediction server (2005) Nucleic Acids Res., 33, pp. W72-76
  • Cole, C., Barber, J.D., Barton, G.J., The Jpred 3 secondary structure prediction server (2008) Nucleic Acids Res., 36, pp. W197-201
  • Comeau, S.R., Gatchell, D.W., Vajda, S., Camacho, C.J., ClusPro: a fully automated algorithm for protein-protein docking (2004) Nucleic Acids Res., 32, pp. W96-99
  • Conrad, M., Schothorst, J., Kankipati, H.N., Van Zeebroeck, G., Rubio-Texeira, M., Thevelein, J.M., Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae (2014) FEMS Microbiol. Rev., 38, pp. 254-299
  • de Beer, T.A., Berka, K., Thornton, J.M., Laskowski, R.A., PDBsum additions (2014) Nucleic Acids Res., 42, pp. D292-296
  • de Gunzburg, J., Veron, M., A cAMP-dependent protein kinase is present in differentiating Dictyostelium discoideum cells (1982) EMBO J., 1, pp. 1063-1068
  • Erickson, H.P., Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy (2009) Biol. Proced. Online, 11, pp. 32-51
  • Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., Pieper, U., Sali, A., Comparative protein structure modeling using Modeller (2006) Curr. Protoc. Bioinform., , (Chapter 5, Unit 5 6)
  • Franke, D., Svergun, D.I., DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering (2009) J. Appl. Crystallogr., 42, pp. 342-346
  • Galello, F., Moreno, S., Rossi, S., Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae (2014) J. Proteomics, 109C, pp. 261-275
  • Gancedo, J.M., Biological roles of cAMP: variations on a theme in the different kingdoms of life (2013) Biol. Rev. Camb. Philos. Soc., 88, pp. 645-668
  • Garcia De La Torre, J., Huertas, M.L., Carrasco, B., Calculation of hydrodynamic properties of globular proteins from their atomic-level structure (2000) Biophys. J., 78, pp. 719-730
  • Griffioen, G., Anghileri, P., Imre, E., Baroni, M.D., Ruis, H., Nutritional control of nucleocytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae (2000) J. Biol. Chem., 275, pp. 1449-1456
  • Griffioen, G., Branduardi, P., Ballarini, A., Anghileri, P., Norbeck, J., Baroni, M.D., Ruis, H., Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit Bcy1 requires Zds1 and is regulated by Yak1-dependent phosphorylation of its targeting domain (2001) Mol. Cell Biol., 21, pp. 511-523
  • Hadad, M., Bresler-Musikant, T., Neuman-Silberberg, F.S., Drosophila spoonbill encodes a dual-specificity A-kinase anchor protein essential for oogenesis (2011) Mech. Dev., 128, pp. 471-482
  • Hausken, Z.E., Coghlan, V.M., Hastings, C.A., Reimann, E.M., Scott, J.D., Type II regulatory subunit (RII) of the cAMP-dependent protein kinase interaction with A-kinase anchor proteins requires isoleucines 3 and 5 (1994) J. Biol. Chem., 269, pp. 24245-24251
  • Hixson, C.S., Krebs, E.G., Characterization of a cyclic AMP-binding protein from bakers' yeast. Identification as a regulatory subunit of cyclic AMP-dependent protein kinase (1980) J. Biol. Chem., 255, pp. 2137-2145
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 27-38. , 33-38
  • Johnson, K.E., Cameron, S., Toda, T., Wigler, M., Zoller, M.J., Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae (1987) Purification and characterization. J. Biol. Chem., 262, pp. 8636-8642
  • Johnson, D.A., Akamine, P., Radzio-Andzelm, E., Madhusudan, M., Taylor, S.S., Dynamics of cAMP-dependent protein kinase (2001) Chem. Rev., 101, pp. 2243-2270
  • Jones, S., Computational and structural characterisation of protein associations (2012) Adv. Exp. Med. Biol., 747, pp. 42-54
  • Kelley, L.A., Sternberg, M.J., Protein structure prediction on the Web: a case study using the Phyre server (2009) Nat. Protocol, 4, pp. 363-371
  • Kinderman, F.S., Kim, C., von Daake, S., Ma, Y., Pham, B.Q., Spraggon, G., Xuong, N.H., Taylor, S.S., A dynamic mechanism for AKAP binding to RII isoforms of cAMP-dependent protein kinase (2006) Mol. Cell, 24, pp. 397-408
  • Kozin, M.B., Svergun, D.I., Automated matching of high- and low-resolution structural models (2001) J. Appl. Crystallogr., 34, pp. 33-41
  • Kronberg, F., Giacometti, R., Ruiz-Herrera, J., Passeron, S., Characterization of the regulatory subunit of Yarrowia lipolytica cAMP-dependent protein kinase. Evidences of a monomeric protein (2011) Arch. Biochem. Biophys., 509, pp. 66-75
  • Li, Y., Rubin, C.S., Mutagenesis of the regulatory subunit (RII beta) of cAMP-dependent protein kinase II beta reveals hydrophobic amino acids that are essential for RII beta dimerization and/or anchoring RII beta to the cytoskeleton (1995) J. Biol. Chem., 270, pp. 1935-1944
  • Matthews, J.M., Sunde, M., Dimers, oligomers, everywhere (2012) Adv. Exp. Med. Biol., 747, pp. 1-18
  • McGuffin, L.J., Bryson, K., Jones, D.T., The PSIPRED protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
  • McWilliam, H., Li, W., Uludag, M., Squizzato, S., Park, Y.M., Buso, N., Cowley, A.P., Lopez, R., Analysis Tool Web Services from the EMBL-EBI (2013) Nucleic Acids Res., 41, pp. W597-600
  • Mertens, H.D., Svergun, D.I., Structural characterization of proteins and complexes using small-angle X-ray solution scattering (2010) J. Struct. Biol., 172, pp. 128-141
  • Mutzel, R., Lacombe, M.L., Simon, M.N., de Gunzburg, J., Veron, M., Cloning and cDNA sequence of the regulatory subunit of cAMP-dependent protein kinase from Dictyostelium discoideum (1987) Proc. Natl. Acad. Sci. USA, 84, pp. 6-10
  • Mylonas, E., Svergun, D.I., Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering (2007) J. Appl. Crystallogr., 40, pp. 245-249
  • Newlon, M.G., Roy, M., Morikis, D., Hausken, Z.E., Coghlan, V., Scott, J.D., Jennings, P.A., The molecular basis for protein kinase A anchoring revealed by solution NMR (1999) Nat. Struct. Biol., 6, pp. 222-227
  • Paveto, C., Passeron, S., Corbin, J.D., Moreno, S., Two different intrachain cAMP sites in the cAMP-dependent protein kinase of the dimorphic fungus Mucor rouxii (1989) Eur. J. Biochem., 179, pp. 429-434
  • Peng, M., Aye, T.T., Snel, B., van Breukelen, B., Scholten, A., Heck, A.J., Spatial Organization in Protein Kinase A Signaling Emerged at the Base of Animal Evolution (2015) J. Proteome Res., 14, pp. 2976-2987
  • Pidoux, G., Tasken, K., Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins (2010) J. Mol. Endocrinol., 44, pp. 271-284
  • Portela, P., Zaremberg, V., Moreno, S., Evaluation of in vivo activation of protein kinase A under non-dissociable conditions through the overexpression of wild-type and mutant regulatory subunits in Saccharomyces cerevisiae (2001) Microbiology, 147, pp. 1149-1159
  • Receveur-Brechot, V., Durand, D., How random are intrinsically disordered proteins? A small angle scattering perspective (2012) Curr. Protein Pept. Sci., 13, pp. 55-75
  • Rinaldi, J., Wu, J., Yang, J., Ralston, C.Y., Sankaran, B., Moreno, S., Taylor, S.S., Structure of yeast regulatory subunit: a glimpse into the evolution of PKA signaling (2010) Structure, 18, pp. 1471-1482
  • Rodrigues, J.P., Levitt, M., Chopra, G., KoBaMIN: a knowledge-based minimization web server for protein structure refinement (2012) Nucleic Acids Res., 40, pp. W323-328
  • Sarma, G.N., Kinderman, F.S., Kim, C., von Daake, S., Chen, L., Wang, B.C., Taylor, S.S., Structure of D-AKAP2:PKA RI complex: insights into AKAP specificity and selectivity (2010) Structure, 18, pp. 155-166
  • Schneidman-Duhovny, D., Hammel, M., Sali, A., FoXS: a web server for rapid computation and fitting of SAXS profiles (2010) Nucleic Acids Res., 38, pp. W540-544
  • Schneidman-Duhovny, D., Kim, S.J., Sali, A., Integrative structural modeling with small angle X-ray scattering profiles (2012) BMC Struct. Biol., 12, p. 17
  • Sherman, F., Fink, G.R., Hicks, J.B., (1986) Laboratory Course Manual for Methods in Yeast Genetics, , Cold Spring Harbor Laboratory, NY
  • Siegel, L.M., Monty, K.J., Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases (1966) Biochim. Biophys. Acta, 112, pp. 346-362
  • Su, Y., Dostmann, W.R., Herberg, F.W., Durick, K., Xuong, N.H., Ten Eyck, L., Taylor, S.S., Varughese, K.I., Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains (1995) Science, 269, pp. 807-813
  • Svergun, D.I., Determination of the regularization parameter in indirect-transform methods using perceptual criteria (1992) J. Appl. Crystallogr., 25, pp. 495-503
  • Tasken, K., Aandahl, E.M., Localized effects of cAMP mediated by distinct routes of protein kinase A (2004) Physiol. Rev., 84, pp. 137-167
  • Taylor, S.S., Kim, C., Vigil, D., Haste, N.M., Yang, J., Wu, J., Anand, G.S., Dynamics of signaling by PKA (2005) Biochim. Biophys. Acta, 1754, pp. 25-37
  • Toda, T., Cameron, S., Sass, P., Zoller, M., Scott, J.D., McMullen, B., Hurwitz, M., Wigler, M., Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae (1987) Mol. Cell Biol., 7, pp. 1371-1377
  • Trevillyan, J.M., Pall, M.L., Isolation and properties of a cyclic AMP-binding protein from Neurospora. Evidence for its role as the regulatory subunit of cyclic AMP-dependent protein kinase (1982) J. Biol. Chem., 257, pp. 3978-3986
  • Vigil, D., Blumenthal, D.K., Brown, S., Taylor, S.S., Trewhella, J., Differential effects of substrate on type I and type II PKA holoenzyme dissociation (2004) Biochemistry, 43, pp. 5629-5636
  • Vigil, D., Blumenthal, D.K., Heller, W.T., Brown, S., Canaves, J.M., Taylor, S.S., Trewhella, J., Conformational differences among solution structures of the type Ialpha, IIalpha and IIbeta protein kinase A regulatory subunit homodimers: role of the linker regions (2004) J. Mol. Biol., 337, pp. 1183-1194
  • Volkov, V.V., Svergun, D.I., Uniqueness of ab initio shape determination in small-angle scattering (2003) J. Appl. Crystallogr., 36, pp. 860-864
  • Welch, E.J., Jones, B.W., Scott, J.D., Networking with AKAPs: context-dependent regulation of anchored enzymes (2010) Mol. Interv., 10, pp. 86-97
  • Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., Honigschmid, P., Rost, B., PredictProtein-an open resource for online prediction of protein structural and functional features (2014) Nucleic Acids Res., 42, pp. W337-W343

Citas:

---------- APA ----------
González Bardeci, N., Caramelo, J.J., Blumenthal, D.K., Rinaldi, J., Rossi, S. & Moreno, S. (2016) . The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain. Journal of Structural Biology, 193(2), 141-154.
http://dx.doi.org/10.1016/j.jsb.2015.12.001
---------- CHICAGO ----------
González Bardeci, N., Caramelo, J.J., Blumenthal, D.K., Rinaldi, J., Rossi, S., Moreno, S. "The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain" . Journal of Structural Biology 193, no. 2 (2016) : 141-154.
http://dx.doi.org/10.1016/j.jsb.2015.12.001
---------- MLA ----------
González Bardeci, N., Caramelo, J.J., Blumenthal, D.K., Rinaldi, J., Rossi, S., Moreno, S. "The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain" . Journal of Structural Biology, vol. 193, no. 2, 2016, pp. 141-154.
http://dx.doi.org/10.1016/j.jsb.2015.12.001
---------- VANCOUVER ----------
González Bardeci, N., Caramelo, J.J., Blumenthal, D.K., Rinaldi, J., Rossi, S., Moreno, S. The PKA regulatory subunit from yeast forms a homotetramer: Low-resolution structure of the N-terminal oligomerization domain. J. Struct. Biol. 2016;193(2):141-154.
http://dx.doi.org/10.1016/j.jsb.2015.12.001