Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hierarchical organization of the cell nucleus into specialized open reservoirs and the nucleoplasm overcrowding impose restrictions to the mobility of biomolecules and their interactions with nuclear targets. These properties determine that many nuclear functions such as transcription, replication, splicing or DNA repair are regulated by complex, dynamical processes that do not follow simple rules. Advanced fluorescence microscopy tools and, in particular, fluorescence correlation spectroscopy (FCS) provide complementary and exquisite information on the dynamics of fluorescent labeled molecules moving through the nuclear space and are helping us to comprehend the complexity of the nuclear structure. Here, we describe how FCS methods can be applied to reveal the dynamical organization of the nucleus in live cells. Specifically, we provide instructions for the preparation of cellular samples with fluorescent tagged proteins and detail how FCS can be easily instrumented in commercial confocal microscopes. In addition, we describe general rules to set the parameters for one and two-color experiments and the required controls for these experiments. Finally, we review the statistical analysis of the FCS data and summarize the use of numerical simulations as a complementary approach that helps us to understand the complex matrix of molecular interactions network within the nucleus. © 2017 Elsevier Inc.

Registro:

Documento: Artículo
Título:Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy
Autor:Stortz, M.; Angiolini, J.; Mocskos, E.; Wolosiuk, A.; Pecci, A.; Levi, V.
Filiación:CONICET – Universidad de Buenos Aires, IFIBYNE, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Argentina
CONICET – Universidad de Buenos Aires, IQUIBICEN, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación, Argentina
CONICET – Centro de Simulación Computacional para Aplicaciones Tecnológicas, Buenos Aires, Argentina
Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Argentina
Palabras clave:Fluorescence correlation spectroscopy; Fluorescence microscopy; Glucocorticoid receptor; Nucleus; Simulations; Transcription factor; glucocorticoid receptor; Article; cell nucleus; cytoplasm; fluorescence correlation spectroscopy; molecular dynamics; molecular interaction; nonhuman; statistical analysis; animal; cell culture technique; cell line; cell nucleus; devices; fluorescence microscopy; fluorescent antibody technique; intravital microscopy; laser; laser scanning cytometry; Mesocricetus; metabolism; procedures; spectrofluorometry; Animals; Cell Culture Techniques; Cell Line; Cell Nucleus; Fluorescent Antibody Technique; Intravital Microscopy; Laser Scanning Cytometry; Lasers; Mesocricetus; Microscopy, Fluorescence; Spectrometry, Fluorescence
Año:2018
Volumen:140-141
Página de inicio:10
Página de fin:22
DOI: http://dx.doi.org/10.1016/j.ymeth.2017.12.008
Título revista:Methods
Título revista abreviado:Methods
ISSN:10462023
CODEN:MTHDE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10462023_v140-141_n_p10_Stortz

Referencias:

  • Schmitt, A.D., Hu, M., Ren, B., Genome-wide mapping and analysis of chromosome architecture (2016) Nat. Rev. Mol. Cell Biol., 17 (12), pp. 743-755
  • Presman, D.M., Ball, D.A., Paakinaho, V., Grimm, J.B., Lavis, L.D., Karpova, T.S., Hager, G.L., Quantifying transcription factor binding dynamics at the single-molecule level in live cells (2017) Methods, 123, pp. 76-88
  • Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., Cremer, T., Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nature reviews (2007) Genetics, 8 (2), pp. 104-115
  • Zink, D., Cremer, T., Cell nucleus: chromosome dynamics in nuclei of living cells (1998) Curr. Biol., 8 (9), pp. R321-R324
  • Foster, H.A., Bridger, J.M., The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture (2005) Chromosoma, 114 (4), pp. 212-229
  • Zullo, J.M., Demarco, I.A., Pique-Regi, R., Gaffney, D.J., Epstein, C.B., Spooner, C.J., Luperchio, T.R., Singh, H., DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina (2012) Cell, 149 (7), pp. 1474-1487
  • Randise-Hinchliff, C., Brickner, J.H., Transcription factors dynamically control the spatial organization of the yeast genome (2016) Nucleus, 7 (4), pp. 369-374
  • Gasser, S.M., Visualizing chromatin dynamics in interphase nuclei (2002) Science, 296 (5572), pp. 1412-1416
  • Tseng, Y., Lee, J.S., Kole, T.P., Jiang, I., Wirtz, D., Micro-organization and visco-elasticity of the interphase nucleus revealed by particle nanotracking (2004) J. Cell Sci., 117, pp. 2159-2167
  • Baum, M., Erdel, F., Wachsmuth, M., Rippe, K., Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells (2014) Nat. Commun., 5, p. 4494
  • Bancaud, A., Huet, S., Daigle, N., Mozziconacci, J., Beaudouin, J., Ellenberg, J., Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin (2009) Embo J., 28 (24), pp. 3785-3798
  • Hinde, E., Cardarelli, F., Digman, M.A., Gratton, E., In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow (2010) Proc. Natl. Acad. Sci. U.S.A., 107 (38), pp. 16560-16565
  • Di Rienzo, C., Piazza, V., Gratton, E., Beltram, F., Cardarelli, F., Probing short-range protein Brownian motion in the cytoplasm of living cells (2014) Nat. Commun., 5, p. 5891
  • Mao, Y.S., Zhang, B., Spector, D.L., Biogenesis and function of nuclear bodies (2011) Trends Genet., 27 (8), pp. 295-306
  • Politz, J.C., Tuft, R.A., Prasanth, K.V., Baudendistel, N., Fogarty, K.E., Lifshitz, L.M., Langowski, J., Pederson, T., Rapid, diffusional shuttling of poly(A) RNA between nuclear speckles and the nucleoplasm (2006) Mol. Biol. Cell, 17 (3), pp. 1239-1249
  • Sleeman, J.E., Trinkle-Mulcahy, L., Nuclear bodies: new insights into assembly/dynamics and disease relevance (2014) Curr. Opin. Cell Biol., 28, pp. 76-83
  • Stanek, D., Fox, A.H., Nuclear bodies: news insights into structure and function (2017) Curr. Opin. Cell Biol., 46, pp. 94-101
  • White, M.D., Angiolini, J.F., Alvarez, Y.D., Kaur Ziqing, G., Zhao, W., Mocskos, E., Bruno, L., Plachta, N., Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo (2016) Cell, 165 (1), pp. 75-87
  • Yu, S.R., Burkhardt, M., Nowak, M., Ries, J., Petrasek, Z., Scholpp, S., Schwille, P., Brand, M., Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules (2009) Nature, 461 (7263), pp. 533-536
  • Papantonis, A., Cook, P.R., Transcription factories: genome organization and gene regulation (2013) Chem. Rev., 113 (11), pp. 8683-8705
  • Misteli, T., Beyond the sequence: cellular organization of genome function (2007) Cell, 128 (4), pp. 787-800
  • van Steensel, B., Brink, M., van der Meulen, K., van Binnendijk, E.P., Wansink, D.G., de Jong, L., de Kloet, E.R., van Driel, R., Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus (1995) J. Cell Sci., 108, pp. 3003-3011
  • Stortz, M., Presman, D.M., Bruno, L., Annibale, P., Dansey, M.V., Burton, G., Gratton, E., Levi, V., Mapping the dynamics of the glucocorticoid receptor within the nuclear landscape (2017) Sci. Rep., 7 (1), p. 6219
  • Mueller, F., Mazza, D., Stasevich, T.J., McNally, J.G., FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? (2010) Curr. Opin. Cell Biol., 22 (3), pp. 403-411
  • Schmiedeberg, L., Weisshart, K., Diekmann, S., Meyer Zu Hoerste, G., Hemmerich, P., High- and low-mobility populations of HP1 in heterochromatin of mammalian cells (2004) Mol. Biol. Cell, 15 (6), pp. 2819-2833
  • Mikuni, S., Tamura, M., Kinjo, M., Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy (2007) FEBS Lett., 581 (3), pp. 389-393
  • Mazza, D., Stasevich, T.J., Karpova, T.S., McNally, J.G., Monitoring dynamic binding of chromatin proteins in vivo by fluorescence correlation spectroscopy and temporal image correlation spectroscopy (2012) Meth. Mol. Biol., 833, pp. 177-200
  • Michelman-Ribeiro, A., Mazza, D., Rosales, T., Stasevich, T.J., Boukari, H., Rishi, V., Vinson, C., McNally, J.G., Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy (2009) Biophys. J., 97 (1), pp. 337-346
  • Groeneweg, F.L., van Royen, M.E., Fenz, S., Keizer, V.I., Geverts, B., Prins, J., de Kloet, E.R., Schaaf, M.J., Quantitation of glucocorticoid receptor DNA-binding dynamics by single-molecule microscopy and FRAP (2014) PLoS One, 9 (3), p. e90532
  • Morisaki, T., Muller, W.G., Golob, N., Mazza, D., McNally, J.G., Single-molecule analysis of transcription factor binding at transcription sites in live cells (2014) Nat. Commun., 5, p. 4456
  • Paakinaho, V., Presman, D.M., Ball, D.A., Johnson, T.A., Schiltz, R.L., Levitt, P., Mazza, D., Hager, G.L., Single-molecule analysis of steroid receptor and cofactor action in living cells (2017) Nat. Commun., 8, p. 15896
  • Houtsmuller, A.B., Fluorescence recovery after photobleaching: application to nuclear proteins (2005) Adv. Biochem. Eng. Biotechnol., 95, pp. 177-199
  • Digman, M.A., Gratton, E., Lessons in fluctuation correlation spectroscopy (2011) Annu. Rev. Phys. Chem., 62, pp. 645-668
  • Levi, V., Gratton, E., Exploring dynamics in living cells by tracking single particles (2007) Cell. Biochem. Biophys., 48 (1), pp. 1-15
  • Digman, M.A., Gratton, E., Imaging barriers to diffusion by pair correlation functions (2009) Biophys. J., 97 (2), pp. 665-673
  • Hebert, B., Costantino, S., Wiseman, P.W., Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells (2005) Biophys. J., 88 (5), pp. 3601-3614
  • Hedde, P.N., Stakic, M., Gratton, E., Rapid measurement of molecular transport and interaction inside living cells using single plane illumination (2014) Sci. Rep., 4, p. 7048
  • Wiseman, P.W., Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space (2013) Meth. Enzymol., 518, pp. 245-267
  • Elson, E.L., Fluorescence correlation spectroscopy: past, present, future (2011) Biophys. J., 101 (12), pp. 2855-2870
  • Enderlein, J., Gregor, I., Patra, D., Fitter, J., Art and artefacts of fluorescence correlation spectroscopy (2004) Curr. Pharm. Biotechnol., 5 (2), pp. 155-161
  • Speil, J., Baumgart, E., Siebrasse, J.P., Veith, R., Vinkemeier, U., Kubitscheck, U., Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus (2011) Biophys. J., 101 (11), pp. 2592-2600
  • Grimm, J.B., English, B.P., Chen, J., Slaughter, J.P., Zhang, Z., Revyakin, A., Patel, R., Lavis, L.D., A general method to improve fluorophores for live-cell and single-molecule microscopy (2015) Nat. Meth., 12 (3), pp. 244-250. , 3 p following 250
  • Tsien, R.Y., The green fluorescent protein (1998) Annu. Rev. Biochem., 67, pp. 509-544
  • Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y., Creating new fluorescent probes for cell biology (2002) Nat. Rev. Mol. Cell Biol., 3 (12), pp. 906-918
  • Lippincott-Schwartz, J., Patterson, G.H., Development and use of fluorescent protein markers in living cells (2003) Science, 300 (5616), pp. 87-91
  • Dean, K.M., Palmer, A.E., Advances in fluorescence labeling strategies for dynamic cellular imaging (2014) Nat. Chem. Biol., 10 (7), pp. 512-523
  • Diaspro, A., Chirico, G., Collini, M., Two-photon fluorescence excitation and related techniques in biological microscopy (2005) Q. Rev. Biophys., 38 (2), pp. 97-166
  • Anderson, V., Principal factors influencing the accuracy of FCS data D.R.f.B.I.O.-E.D.C. University (Ed.); Smith, E.M., Mueller, J.D., The statistics of protein expression ratios for cellular fluorescence studies (2012) Eur. Biophys. J., 41 (3), pp. 341-352
  • Mortensen, R.M., Kingston, R.E., Selection of transfected mammalian cells (2009) Curr. Protoc. Mol. Biol. Chapter 9, , Unit9 5
  • Sander, J.D., Joung, J.K., CRISPR-Cas systems for editing, regulating and targeting genomes (2014) Nat. Biotechnol., 32 (4), pp. 347-355
  • Hsu, P.D., Lander, E.S., Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering (2014) Cell, 157 (6), pp. 1262-1278
  • Ratz, M., Testa, I., Hell, S.W., Jakobs, S., CRISPR/Cas9-mediated endogenous protein tagging for RESOLFT super-resolution microscopy of living human cells (2015) Sci. Rep., 5, p. 9592
  • Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W., Park, J., Huang, B., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system (2013) Cell, 155 (7), pp. 1479-1491
  • Snapp, E., Design and use of fluorescent fusion proteins in cell biology (2005) Curr. Protoc. Cell Biol. Chapter 21, , Unit 21 4
  • Presman, D.M., Ogara, M.F., Stortz, M., Alvarez, L.D., Pooley, J.R., Schiltz, R.L., Grontved, L., Pecci, A., Live cell imaging unveils multiple domain requirements for in vivo dimerization of the glucocorticoid receptor (2014) PLoS Biol., 12 (3), p. e1001813
  • Htun, H., Barsony, J., Renyi, I., Gould, D.L., Hager, G.L., Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera (1996) Proc. Natl. Acad. Sci. U.S.A., 93 (10), pp. 4845-4850
  • Wiedenmann, J., Oswald, F., Nienhaus, G.U., Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges (2009) IUBMB Life, 61 (11), pp. 1029-1042
  • Gibson, T.J., Seiler, M., Veitia, R.A., The transience of transient overexpression (2013) Nat. Meth., 10 (8), pp. 715-721
  • Lo, C.A., Kays, I., Emran, F., Lin, T.J., Cvetkovska, V., Chen, B.E., Quantification of protein levels in single living cells (2015) Cell Rep., 13 (11), pp. 2634-2644
  • Chen, Y., Muller, J.D., So, P.T., Gratton, E., The photon counting histogram in fluorescence fluctuation spectroscopy (1999) Biophys. J., 77 (1), pp. 553-567
  • Digman, M.A., Dalal, R., Horwitz, A.F., Gratton, E., Mapping the number of molecules and brightness in the laser scanning microscope (2008) Biophys. J., 94 (6), pp. 2320-2332
  • Coffman, V.C., Wu, J.Q., Counting protein molecules using quantitative fluorescence microscopy (2012) Trends Biochem. Sci., 37 (11), pp. 499-506
  • Furtado, A., Henry, R., Measurement of green fluorescent protein concentration in single cells by image analysis (2002) Anal. Biochem., 310 (1), pp. 84-92
  • Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R., Preparation of slides and coverslips for microscopy (2008) CSH Protoc., , (2008) pdb prot4988
  • Berland, K.M., So, P.T., Gratton, E., Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment (1995) Biophys. J., 68 (2), pp. 694-701
  • Rigler, R., Mets, U., Widengren, J., Kask, P., Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion (1993) Eur. Biophys. J., 22, pp. 169-175
  • Elson, E.L., Brief introduction to fluorescence correlation spectroscopy (2013) Meth. Enzymol., 518, pp. 11-41
  • Guo, S.M., Bag, N., Mishra, A., Wohland, T., Bathe, M., Bayesian total internal reflection fluorescence correlation spectroscopy reveals hIAPP-induced plasma membrane domain organization in live cells (2014) Biophys. J., 106 (1), pp. 190-200
  • Guo, S.M., He, J., Monnier, N., Sun, G., Wohland, T., Bathe, M., Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: application to simulated and in vitro data (2012) Anal. Chem., 84 (9), pp. 3880-3888
  • Wohland, T., Shi, X., Sankaran, J., Stelzer, E.H., Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments (2010) Opt. Express, 18 (10), pp. 10627-10641
  • Kastrup, L., Blom, H., Eggeling, C., Hell, S.W., Fluorescence fluctuation spectroscopy in subdiffraction focal volumes (2005) Phys. Rev. Lett., 94 (17), p. 178104
  • Levene, M.J., Korlach, J., Turner, S.W., Foquet, M., Craighead, H.G., Webb, W.W., Zero-mode waveguides for single-molecule analysis at high concentrations (2003) Science, 299 (5607), pp. 682-686
  • Hess, S.T., Webb, W.W., Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy (2002) Biophys. J., 83 (4), pp. 2300-2317
  • Booth, M.J., Wilson, T., Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction (2001) J. Biomed. Opt., 6 (3), pp. 266-272
  • Manders, E.M., Visser, A.E., Koppen, A., de Leeuw, W.C., van Liere, R., Brakenhoff, G.J., van Driel, R., Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus (2003) Chromosome Res., 11 (5), pp. 537-547
  • Sibarita, J.B., Deconvolution microscopy (2005) Adv. Biochem. Eng. Biotechnol., 95, pp. 201-243
  • Cole, R.W., Jinadasa, T., Brown, C.M., Measuring and interpreting point spread functions to determine confocal microscope resolution and ensure quality control (2011) Nat. Protoc., 6 (12), pp. 1929-1941
  • Kim, S.A., Heinze, K.G., Schwille, P., Fluorescence correlation spectroscopy in living cells (2007) Nat. Meth., 4 (11), pp. 963-973
  • Kapusta, P., Absolute Diffusion Coefficients: Compilation of Reference Data for FCS Calibration (2010), PicoQuant GmbH; Maeda, T., Lee, M.J., Palczewska, G., Marsili, S., Tesar, P.J., Palczewski, K., Takahashi, M., Maeda, A., Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo (2013) J. Biol. Chem., 288 (48), pp. 34484-34493
  • Axelsson, I., Characterization of proteins and other macromolecules by agarose gel chromatography (1978) J. Chromatogr., 152, pp. 21-32
  • Einstein, A., Investigations on the theory of the brownian movement (1956), Dover Edition; Anand, U., Jash, C., Mukherjee, S., Protein unfolding and subsequent refolding: a spectroscopic investigation (2011) Phys. Chem. Chem. Phys., 13 (45), pp. 20418-20426
  • Enderlein, J., Gregor, I., Using fluorescence lifetime for discriminatinng detector afterpulsing in fluorescence correlation spectroscopy (2005) Rev. Sci. Instrum, 76, p. 033102
  • Zhao, M., Jin, L., Chen, B., Ding, Y., Ma, H., Chen, D., Afterpulsing and its correction in fluorescence correlation spectroscopy experiments (2003) Appl. Opt., 42 (19), pp. 4031-4036
  • Tcherniak, A., Reznik, C., Link, S., Landes, C.F., Fluorescence correlation spectroscopy: criteria for analysis in complex systems (2009) Anal. Chem., 81 (2), pp. 746-754
  • Matsuo, S., Misawa, H., Direct measurement of laser power through a high numerical aperture oil immersion objective lens using a solid immersion lens (2002) Rev. Sci. Instrum., 73 (5)
  • Bacia, K., Kim, S.A., Schwille, P., Fluorescence cross-correlation spectroscopy in living cells (2006) Nat. Meth., 3 (2), pp. 83-89
  • Schwille, P., Haustein, E., Fluorescence Correlation Spectroscopy: An Introduction to its Concepts and Applications Biophys Textbook Online (2001); Lakowicz, J.R., Principles of Fluorescence Spectroscopy (2006), 3rd ed. Springer; Tiwari, M., Mikuni, S., Muto, H., Kinjo, M., Determination of dissociation constant of the NFkappaB p50/p65 heterodimer using fluorescence cross-correlation spectroscopy in the living cell (2013) Biochem. Biophys. Res. Commun., 436 (3), pp. 430-435
  • Bacia, K., Schwille, P., Practical guidelines for dual-color fluorescence cross-correlation spectroscopy (2007) Nat. Protoc., 2 (11), pp. 2842-2856
  • Muller, P., Schwille, P., Weidemann, T., PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy (2014) Bioinformatics, 30 (17), pp. 2532-2533
  • Digman, M.A., Brown, C.M., Horwitz, A.R., Mantulin, W.W., Gratton, E., Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy (2008) Biophys. J., 94 (7), pp. 2819-2831
  • Thompson, N.L., Fluorescence correlation spectroscopy (1991) Topics in Fluorescence Spectroscopy, pp. 337-378. , J.R. Lakowicz Plenum Press New York
  • Saxton, M.J., Anomalous diffusion due to binding: a Monte Carlo study (1996) Biophys. J., 70 (3), pp. 1250-1262
  • Saxton, M.J., Anomalous diffusion due to obstacles: a Monte Carlo study (1994) Biophys. J., 66 (2), pp. 394-401
  • Konishi S, K.G., (2008), Information Criteria and Statistical Modeling, Springer; Angiolini, J.F., Plachta, N., Mocskos, E., Levi, V., Exploring the dynamics of cell processes through simulations of fluorescence microscopy experiments (2015) Biophys. J., 108, pp. 2613-2618
  • Kerr, R.A., Bartol, T.M., Kaminsky, B., Dittrich, M., Chang, J.C., Baden, S.B., Sejnowski, T.J., Stiles, J.R., Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces (2008) SIAM J. Sci. Comput., 30 (6), p. 3126
  • Stiles, J.R., Bartol, T.M., Monte Carlo methods for simulating realistic synaptic microphysiology using MCell (2001) Computational Neuroscience: Realistic Modeling for Experimentalists, pp. 87-127. , E. De Schutter CRC Press Boca Raton
  • Stiles, J.R., Van Helden, D., Bartol, T.M., Jr., Salpeter, E.E., Salpeter, M.M., Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle (1996) Proc. Natl. Acad. Sci. U.S.A., 93 (12), pp. 5747-5752
  • Galigniana, M.D., Scruggs, J.L., Herrington, J., Welsh, M.J., Carter-Su, C., Housley, P.R., Pratt, W.B., Heat shock protein 90-dependent (geldanamycin-inhibited) movement of the glucocorticoid receptor through the cytoplasm to the nucleus requires intact cytoskeleton (1998) Mol. Endocrinol., 12 (12), pp. 1903-1913
  • Voss, T.C., Schiltz, R.L., Sung, M.H., Johnson, T.A., John, S., Hager, G.L., Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity (2009) J. Cell Sci., 122, pp. 345-356
  • Pulleyblank, D., Michalak, M., Daisley, S.L., Glick, R., A method for the purification of E. coli plasmid DNA by homogeneous lysis and polyethylene glycol precipitation (1983) Mol. Biol. Rep., 9 (3), pp. 191-195
  • Mueller, F., Stasevich, T.J., Mazza, D., McNally, J.G., Quantifying transcription factor kinetics: at work or at play? (2013) Crit. Rev. Biochem. Mol. Biol., 48 (5), pp. 492-514
  • Brown, C.M., Dalal, R.B., Hebert, B., Digman, M.A., Horwitz, A.R., Gratton, E., Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope (2008) J. Microsc., 229, pp. 78-91
  • Di Rienzo, C., Gratton, E., Beltram, F., Cardarelli, F., From fast fluorescence imaging to molecular diffusion law on live cell membranes in a commercial microscope (2014) J. Vis. Exp., 92. , e51994
  • Singh, A.P., Galland, R., Finch-Edmondson, M.L., Grenci, G., Sibarita, J.B., Studer, V., Viasnoff, V., Saunders, T.E., 3D protein dynamics in the cell nucleus (2017) Biophys. J., 112 (1), pp. 133-142
  • Gebhardt, J.C., Suter, D.M., Roy, R., Zhao, Z.W., Chapman, A.R., Basu, S., Maniatis, T., Xie, X.S., Single-molecule imaging of transcription factor binding to DNA in live mammalian cells (2013) Nat. Meth., 10 (5), pp. 421-426
  • Levi, V., Ruan, Q., Plutz, M., Belmont, A.S., Gratton, E., Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope (2005) Biophys. J., 89, pp. 4275-4285
  • Izeddin, I., Recamier, V., Bosanac, L., Cisse, I.I., Boudarene, L., Dugast-Darzacq, C., Proux, F., Darzacq, X., Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus (2014) Elife, 3
  • Katz, Z.B., English, B.P., Lionnet, T., Yoon, Y.J., Monnier, N., Ovryn, B., Bathe, M., Singer, R.H., Mapping translation ‘hot-spots’ in live cells by tracking single molecules of mRNA and ribosomes (2016) Elife, 5
  • Cho, W.K., Jayanth, N., English, B.P., Inoue, T., Andrews, J.O., Conway, W., Grimm, J.B., Cisse, I.I., RNA Polymerase II cluster dynamics predict mRNA output in living cells (2016) Elife, 5
  • Phair, R.D., Misteli, T., High mobility of proteins in the mammalian cell nucleus (2000) Nature, 404 (6778), pp. 604-609
  • Mueller, F., Wach, P., McNally, J.G., Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching (2008) Biophys. J., 94 (8), pp. 3323-3339
  • Kaur, G., Costa, M.W., Nefzger, C.M., Silva, J., Fierro-Gonzalez, J.C., Polo, J.M., Bell, T.D., Plachta, N., Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy (2013) Nat. Commun., 4, p. 1637

Citas:

---------- APA ----------
Stortz, M., Angiolini, J., Mocskos, E., Wolosiuk, A., Pecci, A. & Levi, V. (2018) . Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy. Methods, 140-141, 10-22.
http://dx.doi.org/10.1016/j.ymeth.2017.12.008
---------- CHICAGO ----------
Stortz, M., Angiolini, J., Mocskos, E., Wolosiuk, A., Pecci, A., Levi, V. "Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy" . Methods 140-141 (2018) : 10-22.
http://dx.doi.org/10.1016/j.ymeth.2017.12.008
---------- MLA ----------
Stortz, M., Angiolini, J., Mocskos, E., Wolosiuk, A., Pecci, A., Levi, V. "Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy" . Methods, vol. 140-141, 2018, pp. 10-22.
http://dx.doi.org/10.1016/j.ymeth.2017.12.008
---------- VANCOUVER ----------
Stortz, M., Angiolini, J., Mocskos, E., Wolosiuk, A., Pecci, A., Levi, V. Mapping the dynamical organization of the cell nucleus through fluorescence correlation spectroscopy. Methods. 2018;140-141:10-22.
http://dx.doi.org/10.1016/j.ymeth.2017.12.008