Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A sufficient condition that a region be classifiable by a two-layer feedforward neural net (a two-layer perceptron) using threshold activation functions is that either it be a convex polytope or that intersected with the complement of a convex polytope in its interior, or that intersected with the complement of a convex polytope in its interior or . . . recursively. These have been called convex recursive deletion (CoRD) regions. We give a simple algorithm for finding the weights and thresholds in both layers for a feedforward net that implements such a region. The results of this work help in understanding the relationship between the decision region of a perceptron and its corresponding geometry in input space. Our construction extends in a simple way to the case that the decision region is the disjoint union of CoRD regions (requiring three layers). Therefore this work also helps in understanding how many neurons are needed in the second layer of a general three-layer network. In the event that the decision region of a network is known and is the union of CoRD regions, our results enable the calculation of the weights and thresholds of the implementing network directly and rapidly without the need for thousands of backpropagation iterations. © 2000 IEEE.

Registro:

Documento: Artículo
Título:A constructive algorithm to solve "Convex Recursive Deletion" (CoRD) classification problems via two-layer perceptron networks
Autor:Cabrelli, C.; Molter, U.; Shonkwiler, R.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, 1428, Argentina
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, United States
Palabras clave:Convex recursive deletion region; Neural network; Two-layer perceptron; Algorithms; Backpropagation; Computational geometry; Matrix algebra; Multilayer neural networks; Optimization; Theorem proving; Vectors; Convex recursive deletion region; Two layer perceptron; Feedforward neural networks
Año:2000
Volumen:11
Número:3
Página de inicio:811
Página de fin:816
DOI: http://dx.doi.org/10.1109/72.846753
Título revista:IEEE Transactions on Neural Networks
Título revista abreviado:IEEE Trans Neural Networks
ISSN:10459227
CODEN:ITNNE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10459227_v11_n3_p811_Cabrelli

Referencias:

  • Makhoul, J., El-Jaroudi, A., Schwartz, R., Formation of disconnected decision regions with a single hidden layer (1989) Proc. Int. Joint Conf. Neural Networks I, pp. 455-460. , Washington, DC
  • McCurley, R., Miller, K., Shonkwiler, R., Classification power of multiple-layer artificial neural networks (1990) SPIE 1990 Tech. Symp. Opt. Eng. Photon. Aerosp. Sensing; Program Opt./Neural Image Inform. Processing, 1294, pp. 577-587. , Orlando, FL, May
  • Rujan, P., Marchand, M., A geometric approach to learning in neural networks (1989) Proc. Int. Joint Conf. Neural Networks II, pp. 105-109. , Washington, DC
  • Shonkwiler, R., Separating the vertices of N-cubes by hyperplanes and its application to artificial neural networks (1993) Trans. Neural Networks, 4, pp. 343-347. , Jan
  • Wieland, A., Leighton, R., Geometric analysis of neural network capabilities (1988) Proc. 2nd IEEE Int. Conf. Neural Networks II, pp. 385-392. , San Diego, CA

Citas:

---------- APA ----------
Cabrelli, C., Molter, U. & Shonkwiler, R. (2000) . A constructive algorithm to solve "Convex Recursive Deletion" (CoRD) classification problems via two-layer perceptron networks. IEEE Transactions on Neural Networks, 11(3), 811-816.
http://dx.doi.org/10.1109/72.846753
---------- CHICAGO ----------
Cabrelli, C., Molter, U., Shonkwiler, R. "A constructive algorithm to solve "Convex Recursive Deletion" (CoRD) classification problems via two-layer perceptron networks" . IEEE Transactions on Neural Networks 11, no. 3 (2000) : 811-816.
http://dx.doi.org/10.1109/72.846753
---------- MLA ----------
Cabrelli, C., Molter, U., Shonkwiler, R. "A constructive algorithm to solve "Convex Recursive Deletion" (CoRD) classification problems via two-layer perceptron networks" . IEEE Transactions on Neural Networks, vol. 11, no. 3, 2000, pp. 811-816.
http://dx.doi.org/10.1109/72.846753
---------- VANCOUVER ----------
Cabrelli, C., Molter, U., Shonkwiler, R. A constructive algorithm to solve "Convex Recursive Deletion" (CoRD) classification problems via two-layer perceptron networks. IEEE Trans Neural Networks. 2000;11(3):811-816.
http://dx.doi.org/10.1109/72.846753