Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Differentiation between two isomers of hydroxypyridine N-oxide according to the metal cation adducts generated by electrospray ionization (ESI) was investigated for different metal cations, namely Mg (II), Al (III), Ca (II), Sc (III), Fe (III), Co (II), Ni (II), Cu (II), Zn (II), Ga (III), besides the diatomic cation VO(IV). Protonated molecules of the isomeric hydroxypyridine N-oxides as well as the singly/doubly charged adducts formed from neutral or deprotonated ligands and a doubly/ triply charged cation were produced in the gas phase using ESI, recording mass spectra with different metal ions for each isomer. While complex formation was successful for 2- hydroxypyridine N-oxide with trivalent ions, in the case of 3-hydroxypyridine N-oxide, only peaks related to the protonated molecule were present. On the other hand, divalent cations formed specific species for each isomer, giving characteristic spectra in every case. Hence, differentiation was possible irrespective of the metal cation utilized. In addition, quantum chemical calculations at the B3LYP/6-31+G(d,p) level of theory were performed in order to gain insight into the different complexation of calcium(II) with the isomers of hydroxypyridine N-oxide. The relative stability in the gas phase of the neutral complexes of calcium made up of two ligands, as well as the singly charged and doubly charged complexes, was investigated. The results of these calculations improved the understanding of the differences observed in the mass spectra obtained for each isomer. © American Society for Mass Spectrometry,2011.

Registro:

Documento: Artículo
Título:Differentiation of isomeric hydroxypyridine N-Oxides using metal complexation and electrospray ionization mass spectrometry
Autor:Butler, M.; Manez, P.A.; Cabrera, G.M.
Filiación:Departamento de Química Orgánica, UMyMFOR-CONICET, Universidad de Buenos Aires, 3 piso, C1428EHA, Buenos Aires, Argentina
Departamento de Química Inorgánica, INQUIMAE-CONICET, Universidad de Buenos Aires, 1 piso, Buenos Aires, C1428EHA, Argentina
Palabras clave:Electrospray; Hydroxypyridine N-oxides; Metal complexation; Charged cations; Charged complexes; Complex formations; Divalent cation; Electrospray ionization mass spectrometry; Electrosprays; Gain insight; Gasphase; Hydroxypyridine; Mass spectra; Metal cation; Metal complexation; N-Oxides; Neutral complexes; Protonated molecules; Quantum chemical calculations; Relative stabilities; Trivalent ion; Calcium; Cobalt compounds; Electrospray ionization; Gases; Ionization of gases; Iron compounds; Isomers; Ligands; Mass spectrometers; Mass spectrometry; Metal ions; Metals; Positive ions; Protonation; Quantum chemistry; Scandium; Scandium compounds; Zinc compounds; Copper; 2 hydroxypyridine oxide; 3 hydroxypyridine oxide; aluminum chloride; calcium chloride; cobalt chloride; copper sulfate; divalent cation; ferrous chloride; gallium chloride; magnesium chloride; nickel sulfate; pyridine derivative; scandium; unclassified drug; zinc chloride; article; chemical structure; complex formation; controlled study; density functional theory; electrospray mass spectrometry; proton transport; quantum chemistry
Año:2011
Volumen:22
Número:3
Página de inicio:545
Página de fin:556
DOI: http://dx.doi.org/10.1007/s13361-010-0059-7
Título revista:Journal of the American Society for Mass Spectrometry
Título revista abreviado:J. Am. Soc. Mass Spectrom.
ISSN:10440305
CODEN:JAMSE
CAS:aluminum chloride, 7446-70-0, 7784-13-6; calcium chloride, 10043-52-4; cobalt chloride, 1332-82-7, 7646-79-9; copper sulfate, 7758-98-7, 7758-99-8; ferrous chloride, 12040-57-2, 7758-94-3; gallium chloride, 13450-90-3; magnesium chloride, 7786-30-3, 7791-18-6; nickel sulfate, 7786-81-4; scandium, 10361-84-9, 7440-20-2; zinc chloride, 7646-85-7
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10440305_v22_n3_p545_Butler

Referencias:

  • Turecek, F., Gatlin, C.L., Electrospray ionization of inorganic and organometallic complexes (1997) Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, and Applications, p. 527. , Cole, R.B. (ed.) Wiley, New York
  • Pakarinen, J.M.H., Vainiotalo, P., Diastereochemical differentiation of bicyclic diols using metal complexation and collision-induced dissociation mass spectrometry (2009) Rapid Commun. Mass Spectrom., 23, pp. 1767-1775
  • Madhusudanan, K.P., Kumar, B., Tiwari, P., Madhusudan, S.K., Misra, A.K., Tandem mass spectra of transition-metal ion adducts of glycosyl dithioacetals; distinction among stereoisomers (2005) Rapid Communications in Mass Spectrometry, 19 (4), pp. 470-476. , DOI 10.1002/rcm.1811
  • Davis, B.D., Brodbelt, J.S., Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry (2004) Journal of the American Society for Mass Spectrometry, 15 (9), pp. 1287-1299. , DOI 10.1016/j.jasms.2004.06.003, PII S1044030504003708
  • Peiris, D.M., Lam, W., Michael, S., Ramanathan, R., Distinguishing N-oxide and hydroxyl compounds: Impact of heated capillary/heated ion transfer tube in inducing atmospheric pressure ionization source decompositions (2004) Journal of Mass Spectrometry, 39 (6), pp. 600-606. , DOI 10.1002/jms.623
  • Butler, M., Arroyo Mañez, P., Cabrera, G.M., An experimental and computational study on the dissociation behavior of hydroxypyridine Noxides in atmospheric pressure ionization mass spectrometry (2010) J. Mass Spectrom., 45, pp. 536-544
  • Ballesteros, P., Claramunt, R.M., Cañada, T., Foces-Foces, C., Cano, F.H., Elguero, J., Fruchier, A., A 1 H and 13 C nuclear magnetic resonance and X-ray diffraction study of the tautomerism of 2-hydroxy-and 2,3-dihydroxy-pyridine N-oxides. X-ray molecular structure of 2-hydroxypyridine N-oxide (1990) J. Chem. Soc. Perkin Trans., 27, pp. 1215-1219
  • Sun, P.J., Fernando, Q., Freiser, H., Structure and behavior of organic analytical reagents formation constants of transition metal complexes of 2-hydroxypyridine-1-oxide and 2-mercaptopyridine-1-oxide (1964) Anal. Chem., 36, pp. 2485-2486
  • Farkas, E., Enyedy, E.A., Csoka, H., Some factors affecting metal ion-monohydroxamate interactions in aqueous solution (2000) Journal of Inorganic Biochemistry, 79 (1-4), pp. 205-211. , DOI 10.1016/S0162-0134(99)00158-0, PII S0162013499001580
  • Yue, J.-L., Martell, A.E., Potentiometric and spectrophotometric determination of stabilities of the 1-hydroxy-2-pyridinone complexes of trivalent and divalent metal ions (1993) Inorg. Chim. Acta, 214, pp. 103-111
  • Evers, A., Hancock, R.D., Martell, A.E., Motekaitis, R.J., Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe(III), Ga(III), In(III), Al(III), and other highly charged metal ions (1989) Inorg. Chem., 28, pp. 2189-2195
  • Monfardini, I., Massi, L., Tremel, P., Hauville, A., Olivero, S., Duñach, E., Gal, J.-F., Mass spectrometric characterization of metal triflates and triflimides (Lewis superacid catalysts) by electrospray ionization and tandem mass spectrometry (2010) Rapid Commun. Mass Spectrom., 24, pp. 2611-2619
  • Kiss, E., Kawabe, K., Tamura, A., Jakusch, T., Sakurai, H., Kiss, T., Chemical speciation of insulinomimetic VO(IV) complexes of pyridine-N-oxide derivatives: Binary and ternary systems (2003) Journal of Inorganic Biochemistry, 95 (2-3), pp. 69-76. , DOI 10.1016/S0162-0134(03)00103-X
  • Brauer, G., (1996) Handbook of Preparative Inorganic Chemistry 2nd edn, p. 843. , Academic Press, New York
  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2004) Gaussian 03 Revision C. 02, , Gaussian, Inc, Wallingford
  • Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys. Rev. B, 37, pp. 785-789
  • Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange (1993) J. Chem. Phys., 98, pp. 5648-5652
  • El-Nahas, A.M., Hirao, K., A theoretical study on 2-hydroxypyrazine and 2, 3-dihydroxypyrazine: Tautomerism, intramolecular hydrogen bond, solvent effects (1999) J. Theochem, 459, pp. 229-237
  • Fuentealba, P., Pérez, P., Contreras, R., On the condensed Fukui function (2000) J. Chem. Phys, 113, pp. 2544-2551
  • Di Marco, V.B., Ranaldo, M., Bombi, G.G., Traldi, P., Surface-activated chemical ionization versus electrospray ionization in the study of selected aluminium(III)/ligand solution equilibria [1] (2006) Rapid Communications in Mass Spectrometry, 20 (4), pp. 710-712. , DOI 10.1002/rcm.2354
  • David, W.M., Brodbelt, J.S., Threshold dissociation energies of protonated amine/polyether complexes in a quadrupole ion trap (2003) Journal of the American Society for Mass Spectrometry, 14 (4), pp. 383-392. , DOI 10.1016/S1044-0305(03)00070-9
  • Kertesz, T.M., Hall, L.H., Hill, D.W., Grant, D.F., CE50: Quantifying collision induced dissociation energy for small molecule characterization and identification (2009) J. Am. Soc. Mass Spectrom., 20, pp. 1759-1767
  • Henderson, W., McIndoe, J.S., (2005) Mass Spectrometry of Inorganic, Coordination, and Organometallic Compounds, p. 117. , 1st ed. John Wiley, Chichester
  • Couto, N., Ramos, M.J., Fernandez, M.T., Rodrigues, P., Barros, M.T., Costa, M.L., Cabral, B.J.C., Duarte, M.F., Study of doubly charged alkaline earth metal and 3-azidopropionitrile complexes by electrospray ionization mass spectrometry (2008) Rapid Communications in Mass Spectrometry, 22 (4), pp. 582-590. , DOI 10.1002/rcm.3397
  • Couto, N., Duarte, M.F., Fernandez, M.T., Rodrigues, P., Barros, M.T., Costa, M.L., Costa Cabral, B.J., Complexation of transition metals by 3-Azidopropionitrile. An electrospray ionization mass spectrometry study (2007) J. Am. Soc. Mass Spectrom., 18, pp. 453-465
  • Buglyo, P., Potari, N., Study of the interaction between oxovanadium(IV) and hydroxamic acids (2005) Polyhedron, 24 (7), pp. 837-845. , DOI 10.1016/j.poly.2005.03.007, PII S0277538705000938
  • Maciejewska, G., Zierkiewicz, W., Adach, A., Kopacz, M., Zapala, I., Bulik, I., Cieslak-Golonka, M., Wietrzyk, J., Atypical calcium coordination number: Physicochemical study, cytotoxicity, DFT calculations, and in silico pharmacokinetic characteristics of calcium caffeates (2009) J. Inorg. Biochem., 103, pp. 1189-1195
  • Vessecchi, R., Galembeck, S.E., Lopes, N.P., Nascimento, P.G.B.D., Crotti, A.E.M., Application of computational quantum chemistry to chemical processes involved in mass spectrometry [Aplicação da química quântica computacional no estudo de processos químicos envolvidos em espectrometria de massas] (2008) Quim. Nova, 31, pp. 840-853
  • Cardozo, K.H.M., Vessecchi, R., Carvalho, V.M., Pinto, E., Gates, P.J., Colepicolo, P., Galembeck, S.E., Lopes, N.P., A theoretical and mass spectrometry study of the fragmentation of mycosporine-like amino acids (2008) J. Am. Soc. Mass Spectrom., 273, pp. 11-19
  • Crotti, A.E.M., Bronze-Uhle, E.S., Nascimento, P.G.B.D., Donate, P.M., Galembeck, S.E., Vessecchi, R., Lopes, N.P., Gas-phase fragmentation of γ-lactone derivatives by electrospray ionization tandem mass spectrometry (2009) J. Mass Spectrom., 44, pp. 1733-1741
  • Contreras, R.R., Fuentealba, P., Galvan, M., Perez, P., A direct evaluation of regional Fukui functions in molecules (1999) Chemical Physics Letters, 304 (5-6), pp. 405-413. , PII S0009261499003255
  • Yang, W., Mortier, W.J., The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines (1986) J. Am. Chem. Soc., 108, pp. 5708-5711
  • Mulliken, R.S., Electronic population analysis on LCAO-MO molecular wave functions (1955) J. Chem. Phys., (23), pp. 1833-1840
  • Reed, A.E., Curtiss, L.A., Weinhold, F., Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint (1988) Chem. Rev., 88, pp. 899-926
  • Hunter, E.P., Lias, S.G., Evaluated gas phase basicities and proton affinities of molecules: An update (1998) J. Phys. Chem. Ref. Data, 27, pp. 413-656
  • Czakó, G., Mátyus, E., Simmonett, A.C., Császár, A.G., Schaefer III, H.F., Allen, W.D., Anchoring the absolute proton affinity scale (2008) J. Chem. Theory Comput., 4, pp. 1220-1229

Citas:

---------- APA ----------
Butler, M., Manez, P.A. & Cabrera, G.M. (2011) . Differentiation of isomeric hydroxypyridine N-Oxides using metal complexation and electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 22(3), 545-556.
http://dx.doi.org/10.1007/s13361-010-0059-7
---------- CHICAGO ----------
Butler, M., Manez, P.A., Cabrera, G.M. "Differentiation of isomeric hydroxypyridine N-Oxides using metal complexation and electrospray ionization mass spectrometry" . Journal of the American Society for Mass Spectrometry 22, no. 3 (2011) : 545-556.
http://dx.doi.org/10.1007/s13361-010-0059-7
---------- MLA ----------
Butler, M., Manez, P.A., Cabrera, G.M. "Differentiation of isomeric hydroxypyridine N-Oxides using metal complexation and electrospray ionization mass spectrometry" . Journal of the American Society for Mass Spectrometry, vol. 22, no. 3, 2011, pp. 545-556.
http://dx.doi.org/10.1007/s13361-010-0059-7
---------- VANCOUVER ----------
Butler, M., Manez, P.A., Cabrera, G.M. Differentiation of isomeric hydroxypyridine N-Oxides using metal complexation and electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2011;22(3):545-556.
http://dx.doi.org/10.1007/s13361-010-0059-7