Artículo

Cremaschi, G.A.; Cayrol, F.; Sterle, H.A.; Díaz Flaqué, M.C.; Barreiro Arcos, M.L. "Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas" (2016) Pharmacological Research. 109:55-63
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Thyroid hormones (THs) are important regulators of metabolism, differentiation and cell proliferation. They can modify the physiology of human and murine T cell lymphomas (TCL). These effects involve genomic mechanisms, mediated by specific nuclear receptors (TR), as well as nongenomic mechanisms, that lead to the activation of different signaling pathways through the activation of a membrane receptor, the integrin αvβ3. Therefore, THs are able to induce the survival and growth of TCL. Specifically, the signaling induced by THs through the integrin αvβ3 activates proliferative and angiogenic programs, mediated by the regulation of the vascular endothelial growth factor (VEGF). The genomic or pharmacologic inhibition of integrin αvβ3 reduces the production of VEGF and induces cell death both in vitro and in xenograft models of human TCL. Here we review the mechanisms involved in the modulation of the physiology of TCL induced by THs, the analysis of the interaction between genomic and nongenomic actions of THs and their contribution to T cell lymphomagenesis. These actions of THs suggest a novel mechanism for the endocrine modulation of the physiopathology of TCL and they provide a potential molecular target for its treatment. © 2016 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas
Autor:Cremaschi, G.A.; Cayrol, F.; Sterle, H.A.; Díaz Flaqué, M.C.; Barreiro Arcos, M.L.
Filiación:Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Alicia Moreau de Justo 1600, Ciudad Autónoma de Buenos Aires, C1107AAZ, Argentina
Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica (FFyB), UBA, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
Palabras clave:Angiogenesis; Integrin αvβ3; Proliferation; T cell lymphoma; Thyroid hormones; cilengitide; liothyronine; thyroid hormone; thyroid hormone receptor; thyrotropin; thyroxine; vasculotropin; vitronectin receptor; thyroid hormone; thyroid hormone receptor; cancer recurrence; CD8+ T lymphocyte; drug targeting; glioblastoma; human; hyperthyroidism; hypothyroidism; metastasis; natural killer cell; nonhuman; priority journal; Review; solid tumor; T cell lymphoma; T-Cell lymphoma cell line; tumor escape; tumor growth; tumor microenvironment; tumor vascularization; animal; genetics; genomics; Lymphoma, T-Cell; metabolism; T lymphocyte; Animals; Genomics; Humans; Lymphoma, T-Cell; Receptors, Thyroid Hormone; T-Lymphocytes; Thyroid Hormones
Año:2016
Volumen:109
Página de inicio:55
Página de fin:63
DOI: http://dx.doi.org/10.1016/j.phrs.2016.02.001
Título revista:Pharmacological Research
Título revista abreviado:Pharmacol. Res.
ISSN:10436618
CODEN:PHMRE
CAS:cilengitide, 188968-51-6; liothyronine, 6138-47-2, 6893-02-3; thyrotropin, 9002-71-5; thyroxine, 7488-70-2; vasculotropin, 127464-60-2; Receptors, Thyroid Hormone; Thyroid Hormones
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10436618_v109_n_p55_Cremaschi

Referencias:

  • Oetting, A., Yen, P.M., New insights into thyroid hormone action (2007) Best Pract. Res. Clin. Endocrinol. Metab., 21, pp. 193-208
  • Lazar, M.A., Thyroid hormone action: A binding contract (2003) J. Clin. Invest., 112, pp. 497-499
  • Brent, G.A., Mechanisms of thyroid hormone action (2012) J. Clin. Invest., 122, pp. 3035-3043
  • Cheng, S.Y., Leonard, J.L., Davis, P.J., Molecular aspects of thyroid hormone actions (2010) Endocr. Rev., 31, pp. 139-170
  • Chan, I.H., Privalsky, M.L., A conserved lysine in the thyroid hormone receptor-alpha1 DNA-binding domain, mutated in hepatocellular carcinoma, serves as a sensor for transcriptional regulation (2010) Mol. Cancer Res., 8 (1), pp. 15-23
  • Rosen, M.D., Chan, I.H., Privalsky, M.L., Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: A unique regulatory repertoire associated with two renal clear cell carcinomas (2011) Mol. Endocrinol., 25, pp. 1311-1325
  • Davis, P.J., Davis, F.B., Mousa, S.A., Luidens, M.K., Lin, H.Y., Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications (2011) Annu. Rev. Pharmacol. Toxicol., 51, pp. 99-115
  • Davis, P.J., Goglia, F., Leonard, J.L., Nongenomic actions of thyroid hormone (2016) Nat. Rev. Endocrinol., 12 (2), pp. 111-121
  • Bergh, J.J., Lin, H.Y., Lansing, L., Mohamed, S.N., Davis, F.B., Mousa, S., Davis, P.J., Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis (2005) Endocrinology, 146, pp. 2864-2871
  • Sloan, E.K., Pouliot, N., Stanley, K.L., Chia, J., Moseley, J.M., Hards, D.K., Anderson, R.L., Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone (2006) Breast Cancer Res., 8, p. R20
  • Pinto, M., Soares, P., Ribatti, D., Thyroid hormone as a regulator of tumor induced angiogenesis (2011) Cancer Lett., 301, pp. 119-126
  • Tang, H.Y., Lin, H.Y., Zhang, S., Davis, F.B., Davis, P.J., Thyroid hormone causes mitogen-activared protein kinase-dependent phosphorylation of the nuclear estrogen receptor (2004) Endocrinology, 145, pp. 3265-3272
  • Lin, H.Y., Tang, H.Y., Shih, A., Keating, T., Cao, G., Davis, P.J., Davis, F.B., Thyroid hormone is a MAPK-dependent growth factor for thyroid cancer cells and is anti-apoptotic (2007) Steroids, 72 (2), pp. 180-187
  • Lin, H.Y., Sun, M., Tang, H.Y., Lin, C., Luidens, M.K., Mousa, S.A., Incerpi, S., Davis, P.J., L-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase (2009) Am. J. Physiol. Cell Physiol., 296, pp. C980-C991
  • Meng, R., Tang, H.Y., Westfall, J., London, D., Cao, J.H., Mousa, S.A., Luidens, M., Lin, H.Y., Crosstalk between integrin αvβ3 and estrogen receptor-α is involved in thyroid hormone-induced proliferation in human lung carcinoma cells (2011) PLoS One, 6, p. e27547
  • Moriggi, G., Verga Falzacappa, C., Mangialardo, C., Michienzi, S., Stigliano, A., Brunetti, E., Toscano, V., Misiti, S., Thyroid hormones (T3 and T4): Dual effect on human cancer cell proliferation (2011) Anticancer Res., 31, pp. 89-96
  • Jaffiol, C., Baldet, L., Torresani, J., Bismuth, J., Papachristou, C., A case of hypersensitivity to thyroid hormones with normally functioning thyroid gland and increased nuclear triiodothyronine receptors (1990) J. Endocrinol. Invest., 13, pp. 839-845
  • Filipcík, P., Brtko, J., Rauová, L., Sedláková, V., Distribution of triiodothyronine nuclear receptors during the cell cycle in mouse leukemia cells (1992) Folia Biol. (Praha), 38, pp. 332-339
  • Meier-Heusler, S., Pernin, A., Liang, H., Goumaz, M.O., Burger, A.G., Meier, C.A., Quantitation of beta 1 triiodothyronine receptor mRNA in human tissues by competitive reverse transcription polymerase chain reaction (1995) J. Endocrinol. Invest., 18, pp. 767-773
  • Barreiro Arcos, M.L., Sterle, H.A., Paulazo, M.A., Valli, E., Klecha, A.J., Isse, B., Pellizas, C.G., Cremaschi, G.A., Cooperative nongenomic and genomic actions on thyroid hormone mediated-modulation of T cell proliferation involve up-regulation of thyroid hormone receptor and inducible nitric oxide synthase expression (2011) J. Cell. Physiol., 226, pp. 3208-3218
  • Cayrol, F., Díaz Flaqué, M.C., Fernando, T., Yang, S.N., Sterle, H.A., Bolontrade, M., Amorós, M., Cremaschi, G.A., Integrin αvβ3 acting as membrane receptor for thyroid hormones mediates angiogenesis in malignant T cells (2015) Blood, 125, pp. 841-851
  • Fabris, N., Mocchegiani, E., Provinciali, M., Pituitary-thyroid axis and immune system: A reciprocal neuroendocrine-immune interaction (1995) Horm. Res., 43, pp. 29-38
  • Genaro, A.M., Klecha, A.J., Frick, L.R., Barreiro Arcos, M.L., Cremaschi, G.A., Thyroid hormone modulation of immunity. Its participation in chronic stress-induced immune alterations (2010) Curr. Immunol. Rev., 6, pp. 339-347
  • De Vito, P., Incerpi, S., Pedersen, J., Luly, P., Davis, F., Davis, P., Thyroid hormones as modulators of immune activities at the cellular level (2011) Thyroid, 21, pp. 879-890
  • Roksandić, D., Radovanović, A., Danilović Luković, J., Marković Kovačević Filipović, D.M., Čolić, M., Stereological and immunohistochemical study of the spleen in hypothyroid juvenile rats (2015) Acta Veterinaria, 65, pp. 246-259
  • Chatterjee, S., Chandel, A.S., Immunomodulatory role of thyroid hormones: In vivo effect of thyroid hormones on the blastogenic response of lymphoid tissues (1983) Acta Endocrinol. (Copenh.), 103 (1), pp. 95-100
  • Klecha, A.J., Genaro, A.M., Lysionek, A.E., Caro, R.A., Coluccia, G.A., Cremaschi, G.A., Experimental evidence pointing to the bidirectional interaction between the immune system and the thyroid axis (2000) Int. J. Immunopharmacol., 22, pp. 491-500
  • Klecha, A.J., Barreiro Arcos, M.L., Genaro, A.M., Gorelik, G., Silberman, D.M., Caro, R., Cremaschi, G.A., Different mitogen-mediated beta-adrenergic receptor modulation in murine T lymphocytes depending on the thyroid status (2005) Neuroimmunomodulation, 12, pp. 92-99
  • Klecha, A.J., Genaro, A.M., Gorelik, G., Barreiro Arcos, M.L., Silberman, M.D., Schuman, M., Garcia, S.I., Cremaschi, G.A., Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: Thyroid hormone mediated modulation of lymphocyte activity through the protein kinase C signaling pathway (2006) J. Endocrinol., 189, pp. 45-55
  • Bendyug, G.D., Grinevich, Y.A., Khranovskaya, N.N., Fil'Chakov, F.V., Yugrinova, L.G., Kad'Kalenko, A.G., The state of the immune system in thyroidectomized rats (2003) Bull. Exp. Biol. Med., 135, pp. 154-157
  • El-Shaikh, K.A., Gabry, M.S., Othman, G.A., Recovery of age-dependent immunological deterioration in old mice by thyroxine treatment (2006) J. Anim. Physiol. Anim. Nutr. (Berl.), 90, pp. 244-254
  • Watanabe, W., Shimizu, T., Hino, A., Kurokawa, M., A new assay system for evaluation of developmental immunotoxicity of chemical compounds using respiratory syncytial virus infection to offspring mice (2008) Environ. Toxicol. Pharmacol., 25, pp. 69-74
  • Schoenfeld, P.S., Myers, J.W., Myers, L., La Rocque, J.C., Suppression of cell-mediated immunity in hypothyroidism (2005) South Med. J., 88, pp. 347-349
  • Jafarzadeh, A., Poorgholami, M., Izadi, N., Nemati, M., Rezayati, M., Immunological and hematological changes in patients with hyperthyroidism or hypothyroidism (2010) Clin. Invest. Med., 33, pp. E271-E279
  • Stagi, S., Azzari, C., Bindi, G., Galluzzi, F., Nanni, S., Salti, R., Vierucci, A., Undetectable serum IgA and low IgM concentration in children with congenital hypothyroidism (2005) Clin. Immunol., 116, pp. 94-98
  • Collazos, J., Ibarra, S., Mayo, J.A., Thyroid hormones in HIV-infected patients in the highly active antiretroviral therapy era: Evidence of an interrelation between the thyroid axis and the immune system (2003) AIDS, 17, pp. 763-765
  • Ho, H.C., Chapital, A.D., Yu, M., Hypothyroidism and adrenal insufficiency in sepsis and hemorrhagic shock (2004) Arch. Surg., 139, pp. 1199-1203
  • Afhami, S., Haghpanah, V., Heshmat, R., Rasoulinejad, M., Izadi, M., Lashkari, A., Tavangar, S.M., Larijani, B., Assessment of the factors involving in the development of hypothyroidism in HIV-infected patients: A case-control study (2007) Infection, 35, pp. 334-338
  • Nandakumar, D.N., Koner, B.C., Vinayagamoorthi, R., Nanda, N., Negi, V.S., Goswami, K., Bobby, Z., Hamide, A., Activation of NF-κB in lymphocytes and increase in serum immunoglobulin in hyperthyroidism: Possible role of oxidative stress (2008) Immunobiology, 213, pp. 409-415
  • Bloise, F.F., Oliveira, F.L., Nobrega, A.F., Vasconcellos, R., Cordeiro, A., Paiva, L.S., Taub, D.D., Mello-Coelho, V., High levels of circulating triiodothyronine induce plasma cell differentiation (2014) J. Endocrinol., 220, pp. 305-317
  • Goronzy, J.J., Fang, F., Cavanagh, M.M., Qi, Q., Weyand, C.M., Naive T cell maintenance and function in human aging (2015) J. Immunol., 194, pp. 4073-4080
  • Yeap, B.B., Hormones and health outcomes in aging men (2013) Exp. Gerontol., 48, pp. 677-681
  • Hodkinson, C.F., Simpson, E.E., Beattie, J.H., O'Connor, J.M., Campbell, D.J., Strain, J.J., Wallace, J.M., Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55-70 years (2009) J. Endocrinol., 202, pp. 55-63
  • Barreiro Arcos, M.L., Klecha, A.J., Genaro, A.M., Cremaschi, G.A., Immune system modulation by thyroid axis includes direct genomic and nongenomic actions of thyroid hormones on immune cells (2010) Immunol. Endocr. Metab. Agents Med. Chem., 10, pp. 1-10
  • De Vito, P., Balducci, V., Leone, S., Percario, Z., Mangino, G., Davis, P.J., Davis, F.B., Incerpi, S., Nongenomic effects of thyroid hormones on the immune system cells: New targets, old players (2012) Steroids, 77, pp. 988-995
  • Mezosi, E., Szabo, J., Nagy, E.V., Borbely, A., Varga, E., Paragh, G., Varga, Z., Nongenomic effect of thyroid hormone on free-radical production in human polymorphonuclear leukocytes (2005) J. Endocrinol., 185, pp. 121-129
  • Chen, Y., Sjölinder, M., Wang, X., Altenbacher, G., Hagner, M., Berglund, P., Gao, Y., Sjölinder, H., Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection (2012) PLoS One, 7, p. e41445
  • Mascanfroni, I., Montesinos, M.M., Susperreguy, S., Cervi, L., Ilarregui, J.M., Ramseyer, V.D., Masini-Repiso, A.M., Pellizas, C.G., Control of dendritic cell maturation and function by triiodothyronine (2008) FASEB J., 22, pp. 1032-1042
  • Mascanfroni, I.D., Montesinos, M.M., Alamino, V.A., Susperreguy, S., Nicola, J.P., Ilarregui, J.M., Masini-Repiso, A.M., Pellizas, C.G., Nuclear factor (NF)-kappaB-dependent thyroid hormone receptor beta1 expression controls dendritic cell function via Akt signaling (2010) J. Biol. Chem., 285, pp. 9569-9582
  • Barreiro Arcos, M.L., Gorelik, G., Klecha, A., Genaro, A.M., Cremaschi, G.A., Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes (2006) Am. J. Physiol. Cell Physiol., 291 (2), pp. C327-C336
  • Jaffe, E.S., Harris, N.L., Stein, H., Isaacson, P.G., Classification of lymphoid neoplasms: The microscope as a tool for disease discovery (2008) Blood, 112, pp. 4384-4399
  • Gru, A.A., Pathology of T-cell lymphomas: Diagnosis and biomarker discovery (2015) Cancer Treat Res., 165, pp. 51-95
  • Boffetta, P.I., Epidemiology of adult non-Hodgkin lymphoma (2011) Ann. Oncol., 22, pp. iv27-iv31
  • Boi, M., Zucca, E., Inghirami, G., Bertoni, F., Advances in understanding the pathogenesis of systemic anaplastic large cell lymphomas (2015) Br. J. Haematol., 168, pp. 771-783
  • Desimone, J.A., Sodha, P., Ignatova, D., Dummer, R., Cozzio, A., Guenova, P., Recent advances in primary cutaneous T-cell lymphoma (2015) Curr. Opin. Oncol., 27, pp. 128-133
  • Singh, V., Singh, S.M., Progressive tumor growth-associated altered tumor microenvironment: Implications in a tumor stage-dependent modulation in survival of a murine T cell lymphoma (2009) J. Cancer Res. Clin. Oncol., 135, pp. 1015-1024
  • Barreiro Arcos, M.L., Sterle, H.A., Vercelli, C., Valli, E., Cayrol, M.F., Klecha, A.J., Paulazo, M.A., Cremaschi, G.A., Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCζ nitration by nitric oxide synthase (2013) Apoptosis, 18, pp. 1376-1390
  • Sterle, H.A., Valli, E., Cayrol, F., Paulazo, M.A., Martinel Lamas, D.J., Diaz Flaqué, M.C., Klecha, A.J., Barreiro Arcos, M.L., Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis (2014) J. Endocrinol., 222, pp. 243-255
  • Glinskii, A.B., Glinsky, G.V., Lin, H.Y., Tang, H.Y., Sun, M., Davis, F.B., Luidens, M.K., Davis, P.J., Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac) (2009) Cell Cycle, 8, pp. 3562-3570
  • Mousa, S.A., Lin, H.Y., Tang, H.Y., Hercbergs, A., Luidens, M.K., Davis, P.J., Modulation of angiogenesis by thyroid hormone and hormone analogues: Implications for cancer management (2014) Angiogenesis, 17, pp. 463-469
  • Hercbergs, A.H., Ashur-Fabian, O., Garfield, D., Thyroid hormones and cancer: Clinical studies of hypothyroidism in oncology (2010) Curr. Opin. Endocrinol. Diabetes Obes., 17, pp. 432-436
  • Moeller, L.C., Führer, D., Thyroid hormone, thyroid hormone receptors, and cancer: A clinical perspective (2013) Endocr. Relat. Cancer, 20, pp. R19-R29
  • Brown, A.R., Simmen, R.C., Simmen, F.A., The role of thyroid hormone signaling in the prevention of digestive system cancers (2013) Int. J. Mol. Sci., 14, pp. 16240-16257
  • De Sibio, M.T., De Oliveira, M., Moretto, F.C., Olimpio, R.M., Conde, S.J., Luvizon, A.C., Nogueira, C.R., Triiodothyronine and breast cancer (2014) World J. Clin. Oncol., 5 (3), pp. 503-508
  • Ellis, M., Cohen, K., Maman, E.S., Hercbergs, A., Davis, P.J., Ashur-Fabian, O., The involvement of thyroid hormones in cancer (2015) Harefuah, 154, pp. 512-515
  • Ko, A.H., Wang, F., Holly, E.A., Pancreatic cancer and medical history in a population-based case-control study in the San Francisco Bay Area, California (2007) Cancer Causes Control, 18, pp. 809-819
  • Turkyilmaz, A., Eroglu, A., Aydin, Y., Yilmaz, O., Karaoglanoglu, N., A new risk factor in oesophageal cancer aetiology: Hyperthyroidism (2010) Acta Chir. Belg., 110 (5), pp. 533-536
  • Hellevik, A.I., Asvold, B.O., Bjøro, T., Romundstad, P.R., Nilsen, T.I., Vatten, L.J., Thyroid function and cancer risk: A prospective population study (2009) Cancer Epidemiol. Biomarkers Prev., 18, pp. 570-574
  • Lehrer, S., Diamond, E.J., Bajwa, A.M., Kornreich, R., Stagger, S., Stone, N.N., Droller, M.J., Stock, R.G., Association between serum triiodothyronine (T3) level and risk of disease recurrence in men with localized prostate cancer (2001) Prostate Cancer Prostatic Dis., 4 (4), pp. 232-234
  • Tosovic, A., Bondeson, A.G., Bondeson, L., Ericsson, U.B., Malm, J., Manjer, J., Prospectively measured triiodothyronine levels are positively associated with breast cancer risk in postmenopausal women (2010) Breast Cancer Res., 12, p. R33
  • Lehrer, S., Diamond, E.J., Stone, N.N., Droller, M.J., Stock, R.G., Serum triiodothyronine is increased in men with prostate cancer and benign prostatic hyperplasia (2002) J. Urol., 168, pp. 2431-2433
  • Ness, R.B., Grisso, J.A., Cottreau, C., Klapper, J., Vergona, R., Wheeler, J.E., Morgan, M., Schlesselman, J.J., Factors related to inflammation of the ovarian epithelium and risk of ovarian cancer (2000) Epidemiology, 112, pp. 111-117
  • Kang, J.H., Kueck, A.S., Stevens, R., Curhan, G., De Vivo, I., Rosner, B., Alexander, E., Tworoger, S.S., A large cohort study of hypothyroidism and hyperthyroidism in relation to gynecologic cancers (2013) Obstet. Gynecol. Int., , 743721
  • Rennert, G., Rennert, H.S., Pinchev, M., Gruber, S.B., A case-control study of levothyroxine and the risk of colorectal cancer (2010) J. Natl. Cancer Inst., 102, pp. 568-572
  • Boursi, B., Haynes, K., Mamtani, R., Yang, Y.X., Thyroid dysfunction, thyroid hormone replacement and colorectal cancer risk (2015) J. Natl. Cancer Inst., 107, p. djv084
  • Reddy, A., Dash, C., Leerapun, A., Mettler, T.A., Stadheim, L.M., Lazaridis, K.N., Roberts, R.O., Roberts, L.R., Hypothyroidism: A possible risk factor for liver cancer in patients with no known underlying cause of liver disease (2007) Clin. Gastroenterol. Hepatol., 5, pp. 118-123
  • Hassan, M.M., Kaseb, A., Li, D., Patt, Y.Z., Vauthey, J.-N., Thomas, M.B., Curley, S.A., Abbruzzese, J.L., Association between hypothyroidism and hepatocellular carcinoma: A case-control study in the United States (2009) Hepatology, 49, pp. 1563-1570
  • Cristofanilli, M., Yamamura, Y., Kau, S.W., Bevers, T., Strom, S., Patangan, M., Hsu, L., Hortobagyi, G.N., Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma (2005) Cancer, 103, pp. 1122-1128
  • Backwinkel, K., Jackson, A.S., Some features of breast cancer and thyroid deficiency. Report of 280 cases (1964) Cancer, 17, pp. 1174-1176
  • Kuijpens, J.L., Nyklíctek, I., Louwman, M.W., Weetman, T.A., Pop, V.J., Coebergh, J.W., Hypothyroidism might be related to breast cancer in post-menopausal women (2005) Thyroid, 15, pp. 1253-1259
  • Mourouzis, I., Tzovaras, A., Armonis, B., Ardavanis, A., Skondra, M., Misitzis, J., Pectasides, D., Pantos, C., Are thyroid hormone and tumor cell proliferation in human breast cancers positive for HER2 associated? (2015) Int. J. Endocrinol., p. 2015. , 765406
  • Angelousi, A.G., Anagnostou, V.K., Stamatakos, M.K., Georgiopoulos, G.A., Kontzoglou, K.C., Mechanisms in endocrinology: Primary HT and risk for breast cancer: A systematic review and meta-analysis (2012) Eur. J. Endocrinol., 166, pp. 373-381
  • Mondul, A.M., Weinstein, S.J., Bosworth, T., Remaley, A.T., Virtamo, J., Albanes, D., Circulating thyroxine, thyroid-stimulating hormone, and hypothyroid status and the risk of prostate cancer (2012) PLoS One, 7 (10), p. e47730
  • Nelson, M., Hercbergs, A., Rybicki, L., Strome, M., Association between development of hypothyroidism and improved survival in patients with head and neck cancer (2006) Arch. Otolaryngol. Head Neck Surg., 132, pp. 1041-1046
  • Hercbergs, A., Spontaneous remission of cancer-a thyroid hormone dependent phenomenon? (1999) Anticancer Res., 19 A (6), pp. 4839-4844
  • Hercbergs, A.A., Goyal, L.K., Suh, J.H., Lee, S., Reddy, C.A., Cohen, B.H., Stevens, G.H., Barnett, G.H., Propylthiouracil-induced chemical hypothyroidism with high-dose tamoxifen prolongs survival in recurrent high grade glioma: A phase I/II study (2003) Anticancer Res., 23 B (1), pp. 617-626
  • Ashur-Fabian, O., Blumenthal, D.T., Bakon, M., Nass, D., Davis, P.J., Hercbergs, A., Long-term response in high-grade optic glioma treated with medically induced hypothyroidism and carboplatin: A case report and review of the literature (2013) Anticancer Drugs, 24, pp. 315-323
  • Vermey, M.L., Marks, G.T., Baldridge, M.G., Effect of thyroid function on MNU-induced mammary (2015) Carcinogenesis Zool. Sci., 32, pp. 272-277. , http://dx.doi.org/10.2108/zs140124
  • Kumar, M.S., Chiang, T., Deodhar, S.D., Enhancing effect of thyroxine on tumor growth and metastases in syngeneic mouse tumor systems (1979) Cancer Res., 39 (9), pp. 3515-3518
  • Mishkin, S.Y., Pollack, R., Yalovsky, M.A., Morris, H.P., Mishkin, S., Inhibition of local and metastatic hepatoma growth and prolongation of survival after induction of hypothyroidism (1981) Cancer Res., 41, pp. 3040-3045
  • Frau, C., Loi, R., Petrelli, A., Perra, A., Menegon, S., Kowalik, M.A., Pinna, S., Columbano, A., Local hypothyroidism favors the progression of preneoplastic lesions to hepatocellular carcinoma in rats (2015) Hepatology, 61, pp. 249-259
  • Kim, W.G., Cheng, S.Y., Thyroid hormone receptors and cancer (2013) Biochim. Biophys. Acta., 1830, pp. 3928-3936
  • Theodossiou, C., Schwarzenberger, P., Propylthiouracil reduces xenograft tumor growth in an athymic nude mouse prostate cancer model (2000) Am. J. Med. Sci., 319, pp. 96-99
  • Martinez-Iglesias, O., Garcia-Silva, S., Regadera, J., Aranda, A., Hypothyroidism enhances tumor invasiveness and metastasis development (2009) PLoS One, 4, p. e6428
  • Sterle, H.A., Barreiro Arcos, M.L., Valli, E., Paulazo, M.A., Méndez Huergo, S.P., Blidner, A.G., Cayrol, F., Cremaschi, G.A., The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies (2015) J. Mol. Med. (Berl.), , (in press)
  • Yadav, L., Puri, N., Rastogi, V., Satpute, P., Sharma, V., Tumour angiogenesis and angiogenic inhibitors: A review (2015) J. Clin. Diagn. Res., 9, pp. XE01-XE05
  • Mas-Moruno, C., Rechenmacher, F., Kessler, H., Cilengitide: The first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation (2010) Anticancer Agents Med. Chem., 10, pp. 753-768
  • Stupp, R., Hegi, M.E., Gorlia, T., Erridge, S.C., Perry, J., Hong, Y.K., Aldape, K.D., Weller, M., Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): A multicentre, randomised, open-label, phase 3 trial (2014) Lancet Oncol., 15, pp. 1100-1108
  • Friess, H., Langrehr, J.M., Oettle, H., Raedle, J., Niedergethmann, M., Dittrich, C., Hossfeld, D.K., Nippgen, J., A randomized multi-center phase II trial of the angiogenesis inhibitor cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer (2006) BMC Cancer, 6, p. 285
  • Beekman, K.W., Colevas, A.D., Cooney, K., Dipaola, R., Dunn, R.L., Gross, M., Keller, E.T., Hussain, M., Phase II evaluations of Cilengitide in asymptomatic patients with androgen-independent prostate cancer: Scientific rationale and study design (2006) Clin. Genitourin. Cancer, 4, pp. 299-302. , http://dx.doi.org/10.3816/CGC.2006.n.012
  • Bradley, D.A., Dunn, R., Ryan, C., Di Paola, R., Smith, D.C., Cooney, K.A., Mathew, P., Hussain, M., EMD121974 (NSC 707544, cilengitide) in asymptomatic metastatic androgen independent prostate cancer (AIPCa) patients (pts): A randomized trial by the prostate cancer clinical trials consortium (NCI 6372) (2007) J. Clin. Oncol., 25, p. 18s. , (suppl; abstr 5137)
  • Sloan, E.K., Pouliot, N., Stanley, K.L., Chia, J., Moseley, J.M., Hards, D.K., Anderson, R.L., Tumor specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone (2006) Breast Cancer Res., 8, p. R20
  • Hercbergs, A., Johnson, R.E., Ashur-Fabian, O., Garfield, D.H., Davis, P.J., Medically induced euthyroid hypothyroxinemia may extend survival in compassionate need cancer patients: An observational study (2015) Oncologist, 20, pp. 72-76
  • Lin, H.Y., Sun, M., Tang, H.Y., Lin, C., Luidens, M.K., Mousa, S.A., Incerpi, S., Davis, P.J., L-Thyroxine vs. 3,5,3-triiodo-l-thyronine and cell proliferation: Activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase (2009) Am. J. Physiol. Cell Physiol., 296, pp. C980-C991
  • Davis, P.J., Lin, H.Y., Sudha, T., Yalcin, M., Tang, H.Y., Hercbergs, A., Leith, J.T., Mousa, S.A., Nanotetrac targets integrin αvβ3 on tumor cells to disorder cell defense pathways and block angiogenesis (2014) Onco Targets Ther., 7, pp. 1619-1624
  • Yalcin, M., Lin, H.Y., Sudha, T., Bharali, D.J., Meng, R., Tang, H.Y., Davis, F.B., Mousa, S.A., Response of human pancreatic cancer cell xenografts to tetraiodothyroacetic acid nanoparticles (2013) Horm. Cancer, 4, pp. 176-185

Citas:

---------- APA ----------
Cremaschi, G.A., Cayrol, F., Sterle, H.A., Díaz Flaqué, M.C. & Barreiro Arcos, M.L. (2016) . Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas. Pharmacological Research, 109, 55-63.
http://dx.doi.org/10.1016/j.phrs.2016.02.001
---------- CHICAGO ----------
Cremaschi, G.A., Cayrol, F., Sterle, H.A., Díaz Flaqué, M.C., Barreiro Arcos, M.L. "Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas" . Pharmacological Research 109 (2016) : 55-63.
http://dx.doi.org/10.1016/j.phrs.2016.02.001
---------- MLA ----------
Cremaschi, G.A., Cayrol, F., Sterle, H.A., Díaz Flaqué, M.C., Barreiro Arcos, M.L. "Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas" . Pharmacological Research, vol. 109, 2016, pp. 55-63.
http://dx.doi.org/10.1016/j.phrs.2016.02.001
---------- VANCOUVER ----------
Cremaschi, G.A., Cayrol, F., Sterle, H.A., Díaz Flaqué, M.C., Barreiro Arcos, M.L. Thyroid hormones and their membrane receptors as therapeutic targets for T cell lymphomas. Pharmacol. Res. 2016;109:55-63.
http://dx.doi.org/10.1016/j.phrs.2016.02.001