Artículo

Hockl, P.F.; Wolosiuk, A.; Pérez-Sáez, J.M.; Bordoni, A.V.; Croci, D.O.; Toum-Terrones, Y.; Soler-Illia, G.J.A.A.; Rabinovich, G.A. "Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet" (2016) Pharmacological Research. 109:45-54
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Recent efforts toward defining the molecular features of the tumor microenvironment have revealed dramatic changes in the expression of glycan-related genes including glycosyltransferases and glycosidases. These changes affect glycosylation of proteins and lipids not only in cancer cells themselves, but also in cancer associated-stromal, endothelial and immune cells. These glycan alterations including increased frequency of β1,6-branched N-glycans and bisecting N-glycans, overexpression of tumor-associated mucins, preferred expression of T, Tn and sialyl-Tn antigen and altered surface sialylation, may contribute to tumor progression by masking or unmasking specific ligands for endogenous lectins, including members of the C-type lectin, siglec and galectin families. Differential expression of glycans or glycan-binding proteins could be capitalized for the identification of novel biomarkers and might provide novel opportunities for therapeutic intervention. This review focuses on the biological relevance of lectin-glycan interactions in the tumor microenvironment (mainly illustrated by the immunosuppressive and pro-angiogenic activities of galectin-1) and the design of functionalized nanoparticles for pharmacological delivery of multimeric glycans, lectins or selective inhibitors of lectin-glycan interactions with antitumor activity. © 2016 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet
Autor:Hockl, P.F.; Wolosiuk, A.; Pérez-Sáez, J.M.; Bordoni, A.V.; Croci, D.O.; Toum-Terrones, Y.; Soler-Illia, G.J.A.A.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, Buenos Aires, C1428ADN, Argentina
Gerencia Química, Centro Atómico Constituyentes (CAC), Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, San Martín, 1650, Argentina
Instituto de Histología y Embriología de Mendoza (IHEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Casilla de correo 56, Mendoza, 5500, Argentina
Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires, C1428EGA, Argentina
Palabras clave:Cancer; Drug delivery; Galectins; Glycobiology; Nanotechnology; Theranostics; cancer vaccine; dendrimer; galectin; galectin 1; glycan; glycosphingolipid; lectin; liposome; mucin; nanocarrier; nanoparticle; proteoglycan; sialic acid binding immunoglobulin like lectin; Tn antigen; vasculotropin; nanoparticle; cancer diagnosis; cancer immunotherapy; cancer prognosis; cancer resistance; cell surface; glycobiology; glycosylation; human; immune evasion; metastasis; molecular recognition; molecularly targeted therapy; nanotechnology; nonhuman; oncology; priority journal; Review; sialylation; theranostic nanomedicine; tumor growth; tumor microenvironment; tumor vascularization; animal; metabolism; nanotechnology; Neoplasms; Animals; Glycosylation; Humans; Nanoparticles; Nanotechnology; Neoplasms; Tumor Microenvironment
Año:2016
Volumen:109
Página de inicio:45
Página de fin:54
DOI: http://dx.doi.org/10.1016/j.phrs.2016.02.005
Título revista:Pharmacological Research
Título revista abreviado:Pharmacol. Res.
ISSN:10436618
CODEN:PHMRE
CAS:galectin 1, 258495-34-0; vasculotropin, 127464-60-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10436618_v109_n_p45_Hockl

Referencias:

  • Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-867
  • Van Kooyk, Y., Rabinovich, G.A., Protein-glycan interactions in the control of innate and adaptive immune responses (2008) Nat. Immunol., 9, pp. 593-601
  • Laine, R.A., The information-storing potential of the sugar code (1997) Glycosciences Status and Perspectives, pp. 1-14. , S.G. Hans, J. Gabius, Chapman & Hall GmbH Weinheim
  • Boscher, C., Dennis, J.W., Nabi, I.R., Glycosylation: Galectins and cellular signaling (2011) Curr. Opin. Cell Biol., 23, pp. 383-392
  • Stewart, B.W., Wild, C.P., (2014) World Cancer Report 2014, , I.A.f.R.o.C.-. WHO (ed.), IARC publication to be distributed by WHO Press
  • Hakomori, S., Glycosylation defining cancer malignancy: New wine in an old bottle (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 10231-10233
  • Meezan, E., Wu, H.C., Black, P.H., Robbins, P.W., Comparative studies on carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. Separation of glycoproteins and glycopeptides by sephadex chromatography (1969) Biochemistry, 8, pp. 2518-2524
  • Lau, K.S., Dennis, J.W., N-glycans in cancer progression (2008) Glycobiology, 10, pp. 750-760
  • Miwa, H.E., Song, Y., Alvarez, R., Cummings, R.D., Stanley, P., The bisecting GlcNAc in cell growth control and tumor progression (2012) Glycoconj. J., 29, pp. 609-618
  • Kimura, T., Finn, O.J., MUC1 immunotherapy is here to stay (2013) Expert Opin. Biol. Ther., 13, pp. 35-49
  • Bull, C., Stoel, M.A., Den Brok, M.H., Adema, G.J., Sialic acids sweeten a tumor's life (2014) Cancer Res., 74, pp. 3199-3204
  • Fuster, M.M., Esko, J.D., The sweet and sour of cancer: Glycans as novel therapeutic targets (2005) Nat. Rev. Cancer, 5, pp. 526-542
  • Dube, D.H., Bertozzi, C.R., Glycans in cancer and inflammation - Potential for therapeutics and diagnostics (2005) Nat. Rev. Drug Discov., 4, pp. 477-488
  • Mariño, K., Bones, J., Kattla, J., Rudd, P., A systematic approach to protein glycosylation analysis: A path through the maze (2010) Nat. Chem. Biol., 6, pp. 713-723
  • Pinho, S.S., Reis, C.A., Glycosylation in cancer: Mechanisms and clinical implications (2015) Nat. Rev. Cancer., 15 (9)
  • García-Vallejo, J.J., Van Dijk, W., Van Het Hof, B., Van Die, I., Engelse, M.A., Van Hinsbergh, V.W., Gringhuis, S.I., Activation of human endothelial cells by tumor necrosis factor-alpha results in profound changes in the expression of glycosylation-related genes (2006) J. Cell Physiol., 206, pp. 203-210
  • Rabinovich, G.A., Van Kooyk, Y., Cobb, B.A., Glycobiology of immune responses (2012) Ann. N.Y. Acad. Sci., 1253, pp. 1-15
  • Toscano, M.A., Ilarregui, J.M., Bianco, G.A., Campagna, L., Croci, D.O., Salatino, M., Rabinovich, G.A., Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity? (2007) Cytokine Growth Factor Rev., 18, pp. 57-71
  • Gabius, H., Special issue: Animal lectins (2002) Biochim. Biophys. Acta., 1572, pp. 165-434
  • Barondes, S.H., Lectins in cellular slime molds (1986) The Lectins: Properties, Functions, and Applications in Biology and Medicine, pp. 467-491. , I. Liener, N. Sharon, I. Goldstein, Academic Press London
  • Kilpatrick, D.C., Animal lectins: A historical introduction and overview (2002) Biochim. Biophys. Acta., 1572, pp. 187-197
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Hirabayashi, J., Arata, Y., Kasai, K., Frontal affinity chromatography as a tool for elucidation of sugar recognition properties of lectins (2003) Methods Enzymol., 362, pp. 353-368
  • Camby, I., Le Mercier, M., Lefranc, F., Kiss, R., Galectin-1: A small protein with major functions (2006) Glycobiology, 16, pp. 137R-157R
  • Rubinstein, N., Alvarez, M., Zwirner, N.W., Toscano, M.A., Ilarregui, J.M., Bravo, A., Mordoh, J., Rabinovich, G.A., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Cedeno-Laurent, F., Opperman, M., Barthel, S.R., Kuchroo, V.K., Dimitroff, C.J., Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression (2012) J. Immunol., 188, pp. 3127-3313
  • Juszczynski, P., Ouyang, J., Monti, S., Rodig, S.J., Takeyama, K., Abramson, J., Chen, W., Shipp, M.A., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. U. S. A., 104, pp. 13134-13139
  • Banh, A., Zhang, J., Cao, H., Bouley, D.M., Kwok, S., Kong, C., Giaccia, A.J., Le, Q.T., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431
  • Kuo, P.L., Hung, J.Y., Huang, S.K., Chou, S.H., Cheng, D.E., Jong, Y.J., Hung, C.H., Huang, M.S., Lung cancer-derived galectin-1 mediates dendritic cell anergy through inhibitor of DNA binding 3/IL-10 signaling pathway (2011) J. Immunol., 186, pp. 1521-1530
  • Tang, D., Yuan, Z., Xue, X., Lu, Z., Zhang, Y., Wang, H., Chen, M., Jiang, K., High expression of galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer (2012) Int. J. Cancer, 130, pp. 2337-2348
  • Tang, D., Gao, J., Wang, S., Yuan, Z., Ye, N., Chong, Y., Xu, C., Jiang, K., Apoptosis and anergy of T cell induced by pancreatic stellate cells-derived galectin-1 in pancreatic cancer (2015) Tumor Biol., 36, pp. 5617-5626
  • Martínez-Bosch, N., Fernández-Barrena, M.G., Moreno, M., Ortiz-Zapater, E., Munné-Collado, J., Iglesias, M., André, S., Navarro, P., Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and hedgehog signaling activation (2014) Cancer Res., 74, pp. 3512-3524
  • Soldati, R., Berger, E., Zenclussen, A.C., Jorch, G., Lode, H.N., Salatino, M., Rabinovich, G.A., Fest, S., Neuroblastoma triggers an immunoevasive program involving galectin-1-dependent modulation of T cell and dendritic cell compartments (2012) Int. J. Cancer., 131, pp. 1131-1141
  • Verschuere, T., Toelen, J., Maes, W., Poirier, F., Boon, L., Tousseyn, T., Mathivet, T., De Vleeschouwer, S., Glioma-derived galectin-1 regulates innate and adaptive antitumor immunity (2014) Int. J. Cancer, 134, pp. 873-884
  • Baker, G.J., Chockley, P., Yadav, V.N., Doherty, R., Ritt, M., Sivaramakrishnan, S., Castro, M.G., Lowenstein, P.R., Natural killer cells eradicate galectin-1-deficient glioma in the absence of adaptive immunity (2014) Cancer Res., 74, pp. 5079-5090
  • Dalotto-Moreno, T., Croci, D.O., Cerliani, J.P., Martinez-Allo, V.C., Dergan-Dylon, S., Mendez-Huergo, S.P., Stupirski, J.C., Salatino, M., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res., 73, pp. 1107-1117
  • Rutkowski, M.R., Stephen, T.L., Svoronos, N., Allegrezza, M.J., Tesone, A.J., Perales-Puchalt, A., Brencicova, E., Conejo-García, J.R., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell, 27, pp. 27-40
  • Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D.H., Cornejo, M., Kuchroo, V.K., Tim-3/galectin-9 pathway: Regulation of Th1 immunity through CD11b+Ly-6G+ myeloid cells (2010) J. Immunol., 185, pp. 1383-1392
  • Zhou, Q., Munger, M.E., Veenstra, R.G., Weigel, B.J., Hirashima, M., Munn, D.H., Murphy, W.J., Blazar, B.R., Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia (2011) Blood, 117, pp. 4501-4510
  • Demotte, N., Stroobant, V., Courtoy, P.J., Van Der Smissen, P., Colau, D., Luescher, I.F., Hivroz, C., Van Der Bruggen, P., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes (2008) Immunity, 28, pp. 414-424
  • Tsuboi, S., Sutoh, M., Hatakeyama, S., Hiraoka, N., Habuchi, T., Horikawa, Y., Hashimoto, Y., Ohyama, C., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J., 30, pp. 3173-3185
  • Croci, D.O., Salatino, M., Rubinstein, N., Cerliani, J.P., Cavallin, L.E., Leung, H.J., Ouyang, J., Rabinovich, G.A., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J. Exp. Med., 209, pp. 1985-2000
  • Croci, D.O., Cerliani, J.P., Dalotto-Moreno, T., Mendez-Huergo, S.P., Mascanfroni, I.D., Dergan-Dylon, S., Toscano, M.A., Rabinovich, G.A., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Pardoll, D.M., The blockade of immune checkpoints in cancer immunotherapy (2012) Nat. Rev. Cancer, 12, pp. 252-264
  • Peer, D., Karp, J.M., Hong, S., Farokhzad, O.C., Margalit, R., Langer, R., Nanocarriers as an emerging platform for cancer therapy (2007) Nat. Nanotechnol., 2, pp. 751-760
  • Soler-Illiaand, G.J., Azzaroni, O., Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks (2011) Chem. Soc. Rev., 40, pp. 1107-1150
  • Platform, E.T., (2013) Nanomedicine 2020 - Contribution of Nanomedicine to Horizon 2020, , http://www.etp-nanomedicine.eu/public/press-documents/publications/etpn-publications, White Paper to the Horizon 2020 Framework Programme for Research and Innovation, European Comission
  • Thakor, A.S., Gambhir, S.S., Nanooncology: The future of cancer diagnosis and therapy (2013) CA Cancer J. Clin., 63, pp. 395-418
  • Lin, W.E., Special issue: Nanoparticles in medicine (2015) Chem. Rev., 115, pp. 10407-10409
  • Ryu, J.H., Lee, S., Son, S., Kim, S.H., Leary, J.F., Choi, K., Kwon, I.C., Theranostic nanoparticles for future personalized medicine (2014) J. Control. Release., 190, pp. 477-484
  • Fang, J., Nakamura, H., Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect (2011) Adv. Drug Deliv. Rev., 63, pp. 136-151
  • Wagner, V., Dullaart, A., Bock, A.K., Zweck, A., The emerging nanomedicine landscape (2006) Nat. Biotechnol., 24, pp. 1211-1217
  • Svenson, S., Clinical translation of nanomedicines (2012) Curr. Opin. Solid State Mater. Sci., 16, pp. 287-294
  • Farokhzad, O.C., Langer, R., Impact of nanotechnology on drug delivery (2009) ACS Nano, 3, pp. 16-20
  • Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C., Nanoparticles in medicine: Therapeutic applications and developments (2008) Clin. Pharmacol. Ther., 83, pp. 761-769
  • Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C., Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation (2012) Chem. Soc. Rev., 41, pp. 2971-3010
  • Shi, J., Votruba, A.R., Farokhzad, O.C., Langer, R., Nanotechnology in drug delivery and tissue engineering: From discovery to applications (2010) Nano Lett., 10, pp. 3223-3230
  • Kobayashi, T., Cancer hyperthermia using magnetic nanoparticles (2011) Biotechnol. J., 6, pp. 1342-1347
  • Kennedy, L.C., Bickford, L.R., Lewinski, N.A., Coughlin, A.J., Hu, Y., Day, E.S., West, J.L., Derezek, L.A., A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies (2011) Small, 7, pp. 169-183
  • Liu, J., Detrembleur, C., Mornet, S., Jérôme, C., Duguet, E., Design of hybrid nanovehicles for remotely triggered drug release: An overview (2015) J. Mater. Chem. B, 3, pp. 6117-6147
  • Alberti, S., Soler-Illia, G.J.A.A., Azzaroni, O., Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: Controlled delivery and molecular transport in response to chemical, physical and biological stimuli (2015) Chem. Commun., 51, pp. 6050-6075
  • Melancon, M.P., Zhou, M., Li, C., Cancer theranostics with near-infrared light-activatable multimodal nanoparticles (2011) Acc. Chem. Res., 44, pp. 947-956
  • La Thangue, N.B., Kerr, D.J., Predictive biomarkers: A paradigm shift towards personalized cancer medicine (2011) Nat. Rev. Clin. Oncol., 8, pp. 587-596
  • Diamandis, M., White, N.M.A., Yousef, G.M., Personalized medicine: Marking a new epoch in cancer patient management (2010) Mol. Cancer Res., 8, pp. 1175-1187
  • Jokerstand, J.V., Gambhir, S.S., Molecular imaging with theranostic nanoparticles (2011) Acc. Chem. Res., 44, pp. 1050-1060
  • Kim, C.S., Tonga, G.Y., Solfiell, D., Rotello, V.M., Inorganic nanosystems for therapeutic delivery: Status and prospects (2013) Adv. Drug Deliv. Rev., 65, pp. 93-99
  • Cheng, Z., Al Zaki, A., Hui, J.Z., Muzykantov, V.R., Tsourkas, A., Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities (2012) Science, 338, pp. 903-910
  • Kamaly, N., Xiao, Z., Valencia, P.M., Radovic-Moreno, A.F., Farokhzad, O.C., Targeted polymeric therapeutic nanoparticles: Design: Development and clinical translation (2012) Chem. Soc. Rev., 41, pp. 2971-3010
  • Min, Y., Caster, J.M., Eblan, M.J., Wang, A.Z., Clinical translation of nanomedicine (2015) Chem. Rev., 115, pp. 11147-11190
  • Åkerman, M.E., Chan, W.C.W., Laakkonen, P., Bhatia, S.N., Ruoslahti, E., Nanocrystal targeting in vivo (2002) Proc. Natl. Acad. Sci. U. S. A., 99, pp. 12617-12621
  • Kunjachan, S., Ehling, J., Storm, G., Kiessling, F., Lammers, T., Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects (2015) Chem. Rev., 115, pp. 10907-11093
  • Bergna, H.E., Roberts, W.O., (2005) Colloidal Silica: Fundamentals and Applications, , CRC Press
  • Hudson, S., Cooney, J., Magner, E., Proteins in mesoporous silicates (2008) Angew. Chem. Int. Ed., 47, pp. 8582-8594
  • Rimola, A., Costa, D., Sodupe, M., Lambert, J.F., Ugliengo, P., Silica surface features and their role in the adsorption of biomolecules: Computational modeling and experiments (2013) Chem. Rev., 113, pp. 4216-4313
  • Scodeller, P., Catalano, P.N., Salguero, N., Duran, H., Wolosiuk, A., Soler-Illia, G.J.A.A., Hyaluronan degrading silica nanoparticles for skin cancer therapy (2013) Nanoscale, 5, pp. 9690-9698
  • Ashley, C.E., Carnes, E.C., Phillips, G.K., Padilla, D., Durfee, P.N., Brown, P.A., Hanna, T.N., Brinker, C.J., The targeted delivery of multicomponent cargos to cancer cell by nanoporous particle-supported lipid bilayers (2011) Nat. Mater., 10
  • Li, Z., Barnes, J.C., Bosoy, A., Stoddart, J.F., Zink, J.I., Mesoporous silica nanoparticles in biomedical applications (2012) Chem. Soc. Rev., 41, pp. 2590-2605
  • Knežević, N.Z., Ruiz-Hernández, E., Hennink, W.E., Vallet-Regí, M., Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications (2013) RSC Adv., 3, pp. 9584-9593
  • Jankiewicz, B.J., Jamiola, D., Choma, J., Jaroniec, M., Silica-metal core-shell nanostructures (2012) Adv. Colloid Interface Sci., 170, pp. 28-47
  • Lane, L.A., Qian, X., Smith, A.M., Nie, S., Physical chemistry of nanomedicine: Understanding the complex behaviors of nanoparticles in vivo (2015) Annu. Rev. Phys. Chem., 66, pp. 521-547
  • Mura, S., Nicolas, J., Couvreur, P., Stimuli-responsive nanocarriers for drug delivery (2013) Nat. Mater., 12, pp. 991-1003
  • Adak, A.K., Li, B.Y., Lin, C.C., Advances in multifunctional glycosylated nanomaterials: Preparation and applications in glycoscience (2015) Carbohydr. Res., 405, pp. 2-12
  • Conde, J., Dias, J.T., Grazú, V., Moros, M., Baptista, P.V., De La Fuente, J.M., Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine (2014) Front. Chem., 2, p. 48
  • Seeberger, P.H., Automated carbohydrate synthesis as platform to address fundamental aspects of glycobiology-current status and future challenges (2008) Carbohydr. Res., 343, pp. 1889-1896
  • De La Fuente, J.M., Barrientos, A.G., Rojas, T.C., Rojo, J., Cañada, J., Fernández, A., Penadés, S., Gold glyconanoparticles as water-soluble polyvalent models to study carbohydrate interactions (2001) Angew. Chem. Int. Ed., 40, pp. 2258-2261
  • Hölemann, A.F., Seeberger, P.H., Carbohydrate diversity: Synthesis of glycoconjugates and complex carbohydrates (2004) Curr. Opin. Biotechnol., 15, pp. 615-622
  • Garca, I., Marradi, M., Penadés, S., Glyconanoparticles: Multifunctional nanomaterials for biomedical applications (2010) Nanomedicine, 5, pp. 777-792
  • Wang, X., Ramström, O., Yan, M., Dynamic light scattering as an efficient tool to study glyconanoparticle- lectin interactions (2011) Analyst, 136, pp. 4174-4178
  • Zhou, J., Hao, N., De Zoyza, T., Yan, M., Ramström, O., Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery (2015) Chem. Commun., 51, pp. 9833-9836
  • Daniel, M.C., Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology (2004) Chem. Rev., 104, pp. 293-346
  • Brust, M., Fink, J., Bethell, D., Schiffrin, D.J., Kiely, C., Synthesis and reactions of functionalised gold nanoparticles (1995) J. Chem. Soc. Chem. Commun., 165, pp. 1655-1656
  • Marradi, M., Chiodo, F., García, I., Penadés, S., Glyconanoparticles as multifunctional and multimodal carbohydrate systems (2013) Chem. Soc. Rev., 42, pp. 4728-4745
  • Rojo, J., Díaz, V., De La Fuente, J.M., Segura, I., Barrientos, A.G., Riese, H.H., Bernad, A., Penadés, S., Gold glyconanoparticles as new tools in antiadhesive therapy (2004) ChemBioChem, 5, pp. 291-297
  • Otsuka, H., Akiyama, Y., Nagasaki, Y., Kataoka, K., Quantitative and reversible lectin-induced association of gold nanoparticles modified with α-Lactosyl-ω-mercapto-poly(ethylene glycol) (2001) J. Am. Chem. Soc., 123, pp. 8226-8230
  • Lin, C.-C., Yeh, Y.-C., Yang, C.-Y., Chen, G.-F., Chen, Y.-C., Wu, Y.-C., Chen, C.-C., Quantitative analysis of multivalent interactions of carbohydrate-encapsulated gold nanoparticles with concanavalin A (2003) Chem. Commun., pp. 2920-2921
  • Adak, A.K., Lin, H.J., Lin, C.C., Multivalent glycosylated nanoparticles for studying carbohydrate-protein interactions (2014) Org. Biomol. Chem., 12, pp. 5563-5573
  • Marradi, M., Chiodo, F., Garcia, I., Glyconanotechnology and disease: Gold nanoparticles coated with glycosides as multivalent systems for potential applications in diagnostics and therapy (2015) RSC Drug Dis. Ser., 2015 (JANUARY), pp. 89-131
  • Zhou, L., Yuan, J., Wei, Y., Core-shell structural iron oxide hybrid nanoparticles: From controlled synthesis to biomedical applications (2011) J. Mater. Chem., 21, pp. 2823-2840
  • Van Kasteren, S.I., Campbell, S.J., Serres, S., Anthony, D.C., Sibson, N.R., Davis, B.G., Glyconanoparticles allow pre-symptomatic in vivo imaging of brain disease (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 18-23
  • Ei-Boubbou, K., Zhu, D.C., Vasileiou, C., Borhan, B., Prospen, D., Wei, L.I., Huang, X., Magnetic glyco-nanoparticles: A tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging (2010) J. Am. Chem. Soc., 132, pp. 4490-4499
  • Marradi, M., Alcántara, D., De La Fuente, J.M., García-Martín, M.L., Cerdán, S., Penadés, S., Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: Tuning relaxivities with sugars (2009) Chem. Commun., pp. 3922-3924
  • Kottari, N., Chabre, Y.M., Sharma, R., Roy, R., Applications of glyconanoparticles as sweet glycobiological therapeutics and diagnostics (2013) Advances in Polymer Science, 254, pp. 297-342. , P.K. Duttaand, J. Dutta, Springer Berlin Heidelberg
  • Solís, D., Bovin, N.V., Davis, A.P., Jiménez-Barbero, J., Romero, A., Roy, R., Smetana, K., Jr., Gabius, H.J., A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code (2015) Biochim. Biophys. Acta., 1850, pp. 186-235
  • Roy, R., Shiao, T.C., Rittenhouse-Olson, K., Glycodendrimers: Versatile tools for nanotechnology (2013) Braz. J. Pharm. Sci., 49, pp. 85-108
  • Percec, V., Wilson, D.A., Leowanawat, P., Wilson, C.J., Hughes, A.D., Kaucher, M.S., Hammer, D.A., Ropponen, J., Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures (2010) Science, 328, pp. 1009-1014
  • Zhang, S., Moussodia, R.O., Sun, H.J., Leowanawat, P., Muncan, A., Nusbaum, C.D., Chelling, K.M., Percec, V., Mimicking biological membranes with programmable glycan ligands self-assembled from amphiphilic Janus glycodendrimers (2014) Angew. Chem. Int. Ed., 53, pp. 10899-10903
  • Christiansen, M.N., Chik, J., Lee, L., Anugraham, M., Abrahams, J.L., Packer, N.H., Cell surface protein glycosylation in cancer (2014) Proteomics, 14, pp. 525-546
  • Barchi, J.J., Glyco-nanoparticles as platforms for antitumor therapeutic strategies (2011) ACS Symp. Ser., 1091, pp. 161-179
  • Sungsuwan, S., Yin, Z., Huang, X., Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines (2015) ACS Appl. Mater. Interfaces, 7, pp. 17535-17544
  • Parry, A.L., Clemson, N.A., Ellis, J., Bernhard, S.S.R., Davis, B.G., Cameron, N.R., 'Multicopy multivalent' glycopolymer-stabilized gold nanoparticles as potential synthetic cancer vaccines (2013) J. Am. Chem. Soc., 135, pp. 9362-9365
  • Shiao, T.C., Roy, R., Glycodendrimers as functional antigens and antitumor vaccines (2012) New J. Chem., 36, pp. 324-339
  • Zhang, S., Moussodia, R.O., Murzeau, C., Sun, H.J., Klein, M.L., Vértesy, S., André, S., Percec, V., Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins (2015) Angew. Chem. Int. Ed.
  • Rosenberger, I., Strauss, A., Dobiasch, S., Weis, C., Szanyi, S., Gil-Iceta, L., Alonso, E., Jiménez-González, M., Targeted diagnostic magnetic nanoparticles for medical imaging of pancreatic cancer (2015) J. Control. Release, 214, pp. 76-84
  • Danhier, F., Messaoudi, K., Lemaire, L., Benoit, J.P., Lagarce, F., Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosan-lipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation (2015) Int. J. Pharm., 15, pp. 154-161
  • Aykaç, A., Martos-Maldonado, M.C., Casas-Solvas, J.M., Quesada-Soriano, I., García-Maroto, F., García-Fuentes, L., Vargas-Berenguel, A., β-Cyclodextrin-bearing gold glyconanoparticles for the development of site specific drug delivery systems (2014) Langmuir, 14, pp. 234-242
  • Reynolds, J.L., Law, W.C., Mahajan, S.D., Aalinkeel, R., Nair, B., Sykes, D.E., Yong, K.T., Schwartz, S.A., Nanoparticle based galectin-1 gene silencing, implications in methamphetamine regulation of HIV-1 infection in monocyte derived macrophages (2012) J. Neuroimmune Pharmacol., 7, pp. 673-685

Citas:

---------- APA ----------
Hockl, P.F., Wolosiuk, A., Pérez-Sáez, J.M., Bordoni, A.V., Croci, D.O., Toum-Terrones, Y., Soler-Illia, G.J.A.A.,..., Rabinovich, G.A. (2016) . Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacological Research, 109, 45-54.
http://dx.doi.org/10.1016/j.phrs.2016.02.005
---------- CHICAGO ----------
Hockl, P.F., Wolosiuk, A., Pérez-Sáez, J.M., Bordoni, A.V., Croci, D.O., Toum-Terrones, Y., et al. "Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet" . Pharmacological Research 109 (2016) : 45-54.
http://dx.doi.org/10.1016/j.phrs.2016.02.005
---------- MLA ----------
Hockl, P.F., Wolosiuk, A., Pérez-Sáez, J.M., Bordoni, A.V., Croci, D.O., Toum-Terrones, Y., et al. "Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet" . Pharmacological Research, vol. 109, 2016, pp. 45-54.
http://dx.doi.org/10.1016/j.phrs.2016.02.005
---------- VANCOUVER ----------
Hockl, P.F., Wolosiuk, A., Pérez-Sáez, J.M., Bordoni, A.V., Croci, D.O., Toum-Terrones, Y., et al. Glyco-nano-oncology: Novel therapeutic opportunities by combining small and sweet. Pharmacol. Res. 2016;109:45-54.
http://dx.doi.org/10.1016/j.phrs.2016.02.005