Artículo

Di Giorgio, J.A.P.; Bienert, G.P.; Ayub, N.D.; Yaneff, A.; Barberini, M.L.; Mecchia, M.A.; Amodeo, G.; Soto, G.C.; Muschietti, J.P. "Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in arabidopsis Thaliana" (2016) Plant Cell. 28(5):1053-1077
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In flowers with dry stigmas, pollen development, pollination, and pollen tube growth require spatial and temporal regulation of water and nutrient transport. To better understand the molecular mechanisms involved in reproductive processes, we characterized NIP4;1 and NIP4;2, two pollen-specific aquaporins of Arabidopsis thaliana. NIP4;1 and NIP4;2 are paralogs found exclusively in the angiosperm lineage. Although they have 84% amino acid identity, they displayed different expression patterns. NIP4;1 has low expression levels in mature pollen, while NIP4;2 expression peaks during pollen tube growth. Additionally, NIP4;1pro:GUS flowers showed GUS activity in mature pollen and pollen tubes, whereas NIP4;2pro:GUS flowers only in pollen tubes. Single T-DNA mutants and double artificial microRNA knockdowns had fewer seeds per silique and reduced pollen germination and pollen tube length. Transport assays in oocytes showed NIP4;1 and NIP4;2 function as water and nonionic channels. We also found that NIP4;1 and NIP4;2 C termini are phosphorylated by a pollen-specific CPK that modifies their water permeability. Survival assays in yeast indicated that NIP4;1 also transports ammonia, urea, boric acid, and H2O2. Thus, we propose that aquaporins NIP4;1 and NIP4;2 are exclusive components of the reproductive apparatus of angiosperms with partially redundant roles in pollen development and pollination. © 2016 American Society of Plant Biologists. All rights reserved.

Registro:

Documento: Artículo
Título:Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in arabidopsis Thaliana
Autor:Di Giorgio, J.A.P.; Bienert, G.P.; Ayub, N.D.; Yaneff, A.; Barberini, M.L.; Mecchia, M.A.; Amodeo, G.; Soto, G.C.; Muschietti, J.P.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, C1428ADN, Argentina
Metalloid Transport Group, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, D-06466, Germany
Instituto de Genética Ewald A. Favret (CICVyA-INTA), Castelar, Buenos Aires CC25 (1712), Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1033AAJ, Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET-UBA), Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
Instituto de Investigaciones Farmacológicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin, Buenos Aires 956 PB (1113), Argentina
Palabras clave:ammonia; Arabidopsis protein; boric acid; hydrogen peroxide; urea; Arabidopsis; gene expression regulation; genetics; metabolism; physiology; pollen; pollination; transport at the cellular level; Ammonia; Arabidopsis; Arabidopsis Proteins; Biological Transport; Boric Acids; Gene Expression Regulation, Plant; Hydrogen Peroxide; Pollen; Pollination; Urea
Año:2016
Volumen:28
Número:5
Página de inicio:1053
Página de fin:1077
DOI: http://dx.doi.org/10.1105/tpc.15.00776
Título revista:Plant Cell
Título revista abreviado:Plant Cell
ISSN:10404651
CODEN:PLCEE
CAS:ammonia, 14798-03-9, 51847-23-5, 7664-41-7; boric acid, 10043-35-3, 11113-50-1, 11129-12-7, 14213-97-9; hydrogen peroxide, 7722-84-1; urea, 57-13-6; Ammonia; Arabidopsis Proteins; boric acid; Boric Acids; Hydrogen Peroxide; Urea
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10404651_v28_n5_p1053_DiGiorgio

Referencias:

  • Abascal, F., Irisarri, I., Zardoya, R., Diversity and evolution of membrane intrinsic proteins (2014) Biochim. Biophys. Acta, 1840, pp. 1468-1481
  • Agre, P., Mathai, J.C., Smith, B.L., Preston, G.M., Functional analyses of aquaporin water channel proteins (1999) Methods Enzymol., 294, pp. 550-572
  • Ahmadpour, D., Geijer, C., Tamás, M.J., Lindkvist-Petersson, K., Hohmann, S., Yeast reveals unexpected roles and regulatory features of aquaporins and aquaglyceroporins (2014) Biochim. Biophys. Acta, 1840, pp. 1482-1491
  • Alexandersson, E., Fraysse, L., Sjövall-Larsen, S., Gustavsson, S., Fellert, M., Karlsson, M., Johanson, U., Kjellbom, P., Whole gene family expression and drought stress regulation of aquaporins (2005) Plant Mol. Biol., 59, pp. 469-484
  • Alleva, K., Marquez, M., Villarreal, N., Mut, P., Bustamante, C., Bellati, J., Martínez, G., Amodeo, G., Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2; 1) of strawberry fruit (2010) J. Exp. Bot., 61, pp. 3935-3945
  • Anderberg, H.I., Kjellbom, P., Johanson, U., Annotation of Selaginella moellendorffii major intrinsic proteins and the evolution of the protein family in terrestrial plants (2012) Front. Plant Sci., 3, p. 33
  • Beitz, E., Pavlovic-Djuranovic, S., Yasui, M., Agre, P., Schultz, J.E., Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 1153-1158
  • Bellati, J., Alleva, K., Soto, G., Vitali, V., Jozefkowicz, C., Amodeo, G., Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression (2010) Plant Mol. Biol., 74, pp. 105-118
  • Bienert, G.P., Bienert, M.D., Jahn, T.P., Boutry, M., Chaumont, F., Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates (2011) Plant J., 66, pp. 306-317
  • Bienert, G.P., Chaumont, F., Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide (2014) Biochim. Biophys. Acta, 1840, pp. 1596-1604
  • Bienert, G.P., Heinen, R.B., Berny, M.C., Chaumont, F., Maize plasma membrane aquaporin ZmPIP2; 5, but not ZmPIP1; 2, facilitates transmembrane diffusion of hydrogen peroxide (2014) Biochim. Biophys. Acta, 1838, pp. 216-222
  • Bienert, G.P., Møller, A.L.B., Kristiansen, K.A., Schulz, A., Møller, I.M., Schjoerring, J.K., Jahn, T.P., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes (2007) J. Biol. Chem., 282, pp. 1183-1192
  • Blevins, D.G., Lukaszewski, K.M., Boron in plant structure and function (1998) Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, pp. 481-500
  • Boavida, L.C., Borges, F., Becker, J.D., Feijó, J.A., Whole genome analysis of gene expression reveals coordinated activation of signaling and metabolic pathways during pollen-pistil interactions in Arabidopsis (2011) Plant Physiol., 155, pp. 2066-2080
  • Boavida, L.C., McCormick, S., Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana (2007) Plant J., 52, pp. 570-582
  • Bock, K.W., Honys, D., Ward, J.M., Padmanaban, S., Nawrocki, E.P., Hirschi, K.D., Twell, D., Sze, H., Integrating membrane transport with male gametophyte development and function through transcriptomics (2006) Plant Physiol., 140, pp. 1151-1168
  • Borges, F., Gomes, G., Gardner, R., Moreno, N., McCormick, S., Feijó, J.A., Becker, J.D., Comparative transcriptomics of Arabidopsis sperm cells (2008) Plant Physiol., 148, pp. 1168-1181
  • Bots, M., Feron, R., Uehlein, N., Weterings, K., Kaldenhoff, R., Mariani, T., PIP1 and PIP2 aquaporins are differentially expressed during tobacco anther and stigma development (2005) J. Exp. Bot., 56, pp. 113-121
  • Bots, M., Vergeldt, F., Wolters-Arts, M., Weterings, K., van As, H., Mariani, C., Aquaporins of the PIP2 class are required for efficient anther dehiscence in tobacco (2005) Plant Physiol., 137, pp. 1049-1056
  • Brooks, J.M., Wessel, G.M., Selective transport and packaging of the major yolk protein in the sea urchin (2003) Dev. Biol., 261, pp. 353-370
  • Calamita, G., Ferri, D., Gena, P., Liquori, G.E., Cavalier, A., Thomas, D., Svelto, M., The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water (2005) J. Biol. Chem., 280, pp. 17149-17153
  • Chebli, Y., Kaneda, M., Zerzour, R., Geitmann, A., The cell wall of the Arabidopsis pollen tube-spatial distribution, recycling, and network formation of polysaccharides (2012) Plant Physiol., 160, pp. 1940-1955
  • Chen, L., Glycerol modulates water permeation through Escherichia coli aquaglyceroporin GlpF (2013) Biochim. Biophys. Acta, 1828, pp. 1786-1793
  • Choi, W.-G., Roberts, D.M., Arabidopsis NIP2; 1, a major intrinsic protein transporter of lactic acid induced by anoxic stress (2007) J. Biol. Chem., 282, pp. 24209-24218
  • Conant, G.C., Wolfe, K.H., Turning a hobby into a job: How duplicated genes find new functions (2008) Nat. Rev. Genet., 9, pp. 938-950
  • Curran, A., Chang, I.-F., Chang, C.-L., Garg, S., Miguel, R.M., Barron, Y.D., Li, Y., Harper, J.F., Calcium-dependent protein kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates (2011) Front. Plant Sci., 2, p. 36
  • Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., Scheible, W.R., Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis (2005) Plant Physiol., 139, pp. 5-17
  • Darwin, F., Seward, A.C., (1903) More Letters of Charles Darwin: A Record of His Work in a Series of Hitherto Unpublished Letters, p. 2. , (London: J. Murray)
  • Dell, B., Huang, L., Physiological response of plants to low boron (1997) Plant Soil, 193, pp. 103-120
  • Dynowski, M., Schaaf, G., Loque, D., Moran, O., Ludewig, U., Plant plasma membrane water channels conduct the signalling molecule H2O2 (2008) Biochem. J., 414, pp. 53-61
  • Estruch, J.J., Kadwell, S., Merlin, E., Crossland, L., Cloning and characterization of a maize pollen-specific calciumdependent calmodulin-independent protein kinase (1994) Proc. Natl. Acad. Sci. USA, 91, pp. 8837-8841
  • Ferrándiz, C., Pelaz, S., Yanofsky, M.F., Control of carpel and fruit development in Arabidopsis (1999) Annu. Rev. Biochem., 68, pp. 321-354
  • Firon, N., Nepi, M., Pacini, E., Water status and associated processes mark critical stages in pollen development and functioning (2012) Ann. Bot. (Lond.), 109, pp. 1201-1214
  • Fischer, I., Dainat, J., Ranwez, V., Glémin, S., Dufayard, J.-F., Chantret, N., Impact of recurrent gene duplication on adaptation of plant genomes (2014) BMC Plant Biol., 14, p. 151
  • Footitt, S., Dietrich, D., Fait, A., Fernie, A.R., Holdsworth, M.J., Baker, A., Theodoulou, F.L., The COMATOSE ATPbinding cassette transporter is required for full fertility in Arabidopsis (2007) Plant Physiol., 144, pp. 1467-1480
  • Fujita, M., Rice expression atlas in reproductive development (2010) Plant Cell Physiol., 51, pp. 2060-2081
  • Guenther, J.F., Chanmanivone, N., Galetovic, M.P., Wallace, I.S., Cobb, J.A., Roberts, D.M., Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals (2003) Plant Cell, 15, pp. 981-991
  • Hamann, T., Møller, B.L., Improved cloning and expression of cytochrome P450s and cytochrome P450 reductase in yeast (2007) Protein Expr. Purif., 56, pp. 121-127
  • Hanaoka, H., Uraguchi, S., Takano, J., Tanaka, M., Fujiwara, T., OsNIP3; 1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions (2014) Plant J., 78, pp. 890-902
  • Hansen, M., Kun, J.F.J., Schultz, J.E., Beitz, E., A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites (2002) J. Biol. Chem., 277, pp. 4874-4882
  • Heslop-Harrison, J., An interpretation of the hydrodynamics of pollen (1979) Am. J. Bot., 66, pp. 737-743
  • Heslop-Harrison, J., Heslop-Harrison, Y., Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate (1970) Stain Technol., 45, pp. 115-120
  • Honys, D., Twell, D., Transcriptome analysis of haploid male gametophyte development in Arabidopsis (2004) Genome Biol., 5
  • Hove, R.M., Bhave, M., Plant aquaporins with non-aqua functions: Deciphering the signature sequences (2011) Plant Mol. Biol., 75, pp. 413-430
  • Hu, J., Zhang, Y., Wang, J., Zhou, Y., Glycerol affects root development through regulation of multiple pathways in Arabidopsis (2014) PLoS One, 9
  • Jahn, T.P., Møller, A.L.B., Zeuthen, T., Holm, L.M., Klaerke, D.A., Mohsin, B., Kühlbrandt, W., Schjoerring, J.K., Aquaporin homologues in plants and mammals transport ammonia (2004) FEBS Lett., 574, pp. 31-36
  • Johnson, M.A., von Besser, K., Zhou, Q., Smith, E., Aux, G., Patton, D., Levin, J.Z., Preuss, D., Arabidopsis hapless mutations define essential gametophytic functions (2004) Genetics, 168, pp. 971-982
  • Johnson, S.A., McCormick, S., Pollen germinates precociously in the anthers of raring-to-go, an Arabidopsis gametophytic mutant (2001) Plant Physiol., 126, pp. 685-695
  • Johnson-Brousseau, S.A., McCormick, S., A compendium of methods useful for characterizing Arabidopsis pollen mutants and gametophytically-expressed genes (2004) Plant J., 39, pp. 761-775
  • Katsuhara, M., Sasano, S., Horie, T., Matsumoto, T., Rhee, J., Shibasaka, M., Functional and molecular characteristics of rice and barley NIP aquaporins transporting water, hydrogen peroxide and arsenite (2014) Plant Biotechnol., 219, pp. 213-219
  • Kim, S., Lieberman, T.D., Kishony, R., Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance (2014) Proc. Natl. Acad. Sci. USA, 111, pp. 14494-14499
  • Kozono, D., Ding, X., Kwasaki, I., Meng, X., Kamagata, Y., Agre, P., Kitagawa, Y., Functional expression and characterization of an archaeal aquaporin (2003) J. Biol. Chem., 278, pp. 10649-10656
  • Kreida, S., Törnroth-Horsefield, S., Structural insights into aquaporin selectivity and regulation (2015) Curr. Opin. Struct. Biol., 33, pp. 126-134
  • Laize, V., Rousselet, G., Hohmann, S., Ripoche, P., Molecular and functional study of AQY1 from Saccharomyces cerevisiae: Role of the C-terminal domain (1999) Biochem. Biophys. Res. Commun., 144, pp. 139-144
  • Li, G., Santoni, V., Maurel, C., Plant aquaporins: Roles in plant physiology (2014) Biochim. Biophys. Acta, 1840, pp. 1574-1582
  • Li, T., Choi, W., Wallace, I.S., Baudry, J., Roberts, D.M., Arabidopsis thaliana NIP7; 1: An anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore (2011) Biochemistry, 50, pp. 6633-6641
  • Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D.-T., Lin, J., Single-molecule analysis of PIP2; 1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation (2011) Plant Cell, 23, pp. 3780-3797
  • Liu, L.-H., Ludewig, U., Gassert, B., Frommer, W.B., von Wirén, N., Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis (2003) Plant Physiol., 133, pp. 1220-1228
  • Lolle, S.J., Hsu, W., Pruitt, R.E., Genetic analysis of organ fusion in Arabidopsis thaliana (1998) Genetics, 149, pp. 607-619
  • Loraine, A.E., McCormick, S., Estrada, A., Patel, K., Qin, P., RNA-Seq of Arabidopsis pollen uncovers novel transcription and alternative splicing (2013) Plant Physiol., 162, pp. 1092-1109
  • Luu, D.-T., Martinière, A., Sorieul, M., Runions, J., Maurel, C., Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress (2012) Plant J., 69, pp. 894-905
  • Maeshima, M., Ishikawa, F., ER membrane aquaporins in plants (2008) Pflugers Arch., 456, pp. 709-716
  • Marini, A.-M., Soussi-Boudekou, S., Vissers, S., Andre, B., A family of ammonium transporters in Saccharomyces cerevisiae (1997) Mol. Cell. Biol., 17, pp. 4282-4293
  • Masalkar, P., Wallace, I.S., Hwang, J.H., Roberts, D.M., Interaction of cytosolic glutamine synthetase of soybean root nodules with the C-terminal domain of the symbiosome membrane nodulin 26 aquaglyceroporin (2010) J. Biol. Chem., 285, pp. 23880-23888
  • Maurel, C., Reizer, J., Schroeder, J.I., Chrispeels, M.J., Saier, M.H., Jr., Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes (1994) J. Biol. Chem., 269, pp. 11869-11872
  • Mori, T., Kuroiwa, H., Higashiyama, T., Kuroiwa, T., GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization (2006) Nat. Cell Biol., 8, pp. 64-71
  • Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-497
  • Murphy, D.J., The extracellular pollen coat in members of the Brassicaceae: Composition, biosynthesis, and functions in pollination (2006) Protoplasma, 228, pp. 31-39
  • Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A., Davis, R.M., Harper, J.F., Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes (2009) Plant J., 59, pp. 528-539
  • Nozawa, A., Takano, J., Kobayashi, M., von Wirén, N., Fujiwara, T., Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae (2006) FEMS Microbiol. Lett., 262, pp. 216-222
  • O'Brien, M., Bertrand, C., Matton, D.P., Characterization of a fertilization-induced and developmentally regulated plasmamembrane aquaporin expressed in reproductive tissues, in the wild potato Solanum chacoense Bitt (2002) Planta, 215, pp. 485-493
  • O'Neill, M.A., Ishii, T., Albersheim, P., Darvill, A.G., Rhamnogalacturonan II: Structure and function of a borate crosslinked cell wall pectic polysaccharide (2004) Annu. Rev. Plant Biol., 55, pp. 109-139
  • Ojangu, E.-L., Tanner, K., Pata, P., Järve, K., Holweg, C.L., Truve, E., Paves, H., Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis (2012) BMC Plant Biol., 12, p. 81
  • Pacini, E., Jacquard, C., Clément, C., Pollen vacuoles and their significance (2011) Planta, 234, pp. 217-227
  • Perez Di Giorgio, J., Soto, G., Alleva, K., Jozefkowicz, C., Amodeo, G., Muschietti, J.P., Ayub, N.D., Prediction of aquaporin function by integrating evolutionary and functional analyses (2014) J. Membr. Biol., 247, pp. 107-125
  • Pommerrenig, B., Diehn, T.A., Bienert, G.P., Metalloidoporins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport (2015) Plant Sci., 238, pp. 212-227
  • Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein (1992) Science, 256, pp. 385-387
  • Preuss, D., Lemieux, B., Yen, G., Davis, R.W., A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization (1993) Genes Dev., 7, pp. 974-985
  • Qin, Y., Leydon, A.R., Manziello, A., Pandey, R., Mount, D., Denic, S., Vasic, B., Palanivelu, R., Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil (2009) PLoS Genet., 5
  • Rodriguez Milla, M.A., Uno, Y., Chang, I.-F., Townsend, J., Maher, E.A., Quilici, D., Cushman, J.C., A novel yeast twohybrid approach to identify CDPK substrates: Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein (2006) FEBS Lett., 580, pp. 904-911
  • Rougé, P., Barre, A., A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants (2008) Biochem. Biophys. Res. Commun., 367, pp. 60-66
  • Ruiter, R.K., van Eldik, G.J., van Herpen, M.M., Schrauwen, J.A., Wullems, G.J., Expression in anthers of two genes encoding Brassica oleracea transmembrane channel proteins (1997) Plant Mol. Biol., 34, pp. 163-168
  • Samuel, M.A., Chong, Y.T., Haasen, K.E., Aldea-Brydges, M.G., Stone, S.L., Goring, D.R., Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex (2009) Plant Cell, 21, pp. 2655-2671
  • Schnurbusch, T., Hayes, J., Hrmova, M., Baumann, U., Ramesh, S.A., Tyerman, S.D., Langridge, P., Sutton, T., Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2; 1 (2010) Plant Physiol., 153, pp. 1706-1715
  • Schwab, R., Ossowski, S., Riester, M., Warthmann, N., Weigel, D., Highly specific gene silencing by artificial microRNAs in Arabidopsis (2006) Plant Cell, 18, pp. 1121-1133
  • Shachar-Hill, B., Hill, A.E., Powell, J., Skepper, J.N., Shachar-Hill, Y., Mercury-sensitive water channels as possible sensors of water potentials in pollen (2013) J. Exp. Bot., 64, pp. 5195-5205
  • Sommer, A., Geist, B., Da Ines, O., Gehwolf, R., Schäffner, A.R., Obermeyer, G., Ectopic expression of Arabidopsis thaliana plasma membrane intrinsic protein 2 aquaporins in lily pollen increases the plasma membrane water permeability of grain but not of tube protoplasts (2008) New Phytol., 180, pp. 787-797
  • Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D., New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible (2012) Gene, 503, pp. 165-176
  • Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., Muschietti, J.P., AtTIP1; 3 and AtTIP5; 1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea (2008) FEBS Lett., 582, pp. 4077-4082
  • Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Erijman, E.J., Mazzella, A., Muschietti, J., TIP5; 1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana (2010) Plant J., 64, pp. 1038-1047
  • Steinhorst, L., Kudla, J., Calcium-a central regulator of pollen germination and tube growth (2013) Biochim. Biophys. Acta, 1833, pp. 1573-1581
  • Sugiyama, N., Nakagami, H., Mochida, K., Daudi, A., Tomita, M., Shirasu, K., Ishihama, Y., Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis (2008) Mol. Syst. Biol., 4, p. 193
  • Takano, J., Wada, M., Ludewig, U., Schaaf, G., von Wirén, N., Fujiwara, T., The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation (2006) Plant Cell, 18, pp. 1498-1509
  • Tanaka, M., Wallace, I.S., Takano, J., Roberts, D.M., Fujiwara, T., NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis (2008) Plant Cell, 20, pp. 2860-2875
  • Wallace, I.S., Choi, W.-G., Roberts, D.M., The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins (2006) Biochim. Biophys. Acta, 1758, pp. 1165-1175
  • Wallace, I.S., Roberts, D.M., Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels (2005) Biochemistry, 44, pp. 16826-16834
  • Wallace, I.S., Roberts, D.M., Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter (2004) Plant Physiol., 135, pp. 1059-1068
  • Wang, Y., Zhang, W.-Z., Song, L.-F., Zou, J.-J., Su, Z., Wu, W.-H., Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis (2008) Plant Physiol., 148, pp. 1201-1211
  • Whelan, J.A., Russell, N.B., Whelan, M.A., A method for the absolute quantification of cDNA using real-time PCR (2003) J. Immunol. Methods, 278, pp. 261-269
  • Williams, J.H., Novelties of the flowering plant pollen tube underlie diversification of a key life history stage (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 11259-11263
  • Williams, J.H., The evolution of pollen germination timing in flowering plants: Austrobaileya scandens (austrobaileyaceae) (2012) AoB Plants, 12, pp. 1-12
  • Wudick, M.M., Luu, D.-T., Tournaire-Roux, C., Sakamoto, W., Maurel, C., Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction (2014) Plant Physiol., 164, pp. 1697-1706
  • Xu, W., Dai, W., Yan, H., Li, S., Shen, H., Chen, Y., Xu, H., Ma, M., Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions (2015) Mol. Plant, 8, pp. 722-733
  • Yang, Z., Wang, Y., Gao, Y., Zhou, Y., Zhang, E., Hu, Y., Yuan, Y., Xu, C., Adaptive evolution and divergent expression of heat stress transcription factors in grasses (2014) BMC Evol. Biol., 14, p. 147
  • Yoon, G.M., Dowd, P.E., Gilroy, S., McCubbin, A.G., Calcium-dependent protein kinase isoforms in Petunia have distinct functions in pollen tube growth, including regulating polarity (2006) Plant Cell, 18, pp. 867-878
  • Zhang, D., Wengier, D., Shuai, B., Gui, C.-P., Muschietti, J., McCormick, S., Tang, W.-H., The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth (2008) Plant Physiol., 148, pp. 1368-1379
  • Zhang, M., Fan, J., Taylor, D.C., Ohlrogge, J.B., DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development (2009) Plant Cell, 21, pp. 3885-3901
  • Zhang, R.B., Verkman, A.S., Water and urea permeability properties of Xenopus oocytes: Expression of mRNA from toad urinary bladder (1991) Am. J. Physiol., 260, pp. C26-C34
  • Zhang, X., Henriques, R., Lin, S.-S., Niu, Q.-W., Chua, N.-H., Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method (2006) Nat. Protoc., 1, pp. 641-646
  • Zhao, L.-N., Shen, L.-K., Zhang, W.-Z., Zhang, W., Wang, Y., Wu, W.-H., Ca2+-dependent protein kinase11 and 24 modulate the activity of the inward rectifying K+ channels in Arabidopsis pollen tubes (2013) Plant Cell, 25, pp. 649-661
  • Zinkl, G.M., Zwiebel, B.I., Grier, D.G., Preuss, D., Pollenstigma adhesion in Arabidopsis: A species-specific interaction mediated by lipophilic molecules in the pollen exine (1999) Development, 126, pp. 5431-5440

Citas:

---------- APA ----------
Di Giorgio, J.A.P., Bienert, G.P., Ayub, N.D., Yaneff, A., Barberini, M.L., Mecchia, M.A., Amodeo, G.,..., Muschietti, J.P. (2016) . Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in arabidopsis Thaliana. Plant Cell, 28(5), 1053-1077.
http://dx.doi.org/10.1105/tpc.15.00776
---------- CHICAGO ----------
Di Giorgio, J.A.P., Bienert, G.P., Ayub, N.D., Yaneff, A., Barberini, M.L., Mecchia, M.A., et al. "Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in arabidopsis Thaliana" . Plant Cell 28, no. 5 (2016) : 1053-1077.
http://dx.doi.org/10.1105/tpc.15.00776
---------- MLA ----------
Di Giorgio, J.A.P., Bienert, G.P., Ayub, N.D., Yaneff, A., Barberini, M.L., Mecchia, M.A., et al. "Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in arabidopsis Thaliana" . Plant Cell, vol. 28, no. 5, 2016, pp. 1053-1077.
http://dx.doi.org/10.1105/tpc.15.00776
---------- VANCOUVER ----------
Di Giorgio, J.A.P., Bienert, G.P., Ayub, N.D., Yaneff, A., Barberini, M.L., Mecchia, M.A., et al. Pollen-specific aquaporins NIP4;1 and NIP4;2 are required for pollen development and pollination in arabidopsis Thaliana. Plant Cell. 2016;28(5):1053-1077.
http://dx.doi.org/10.1105/tpc.15.00776