Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant's defense system and to spread within the host. © 2011 American Society of Plant Biologists. All rights reserved.

Registro:

Documento: Artículo
Título:Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in Tomato
Autor:El-Oirdi, M.; El-Rahman, T.A.; Rigano, L.; El-Hadrami, A.; Rodriguez, M.C.; Daayf, F.; Vojnov, A.; Bouarab, K.
Filiación:Centre de Recherche en Amélioration Végétale, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará-Consejo Nacional de Investigaciones Cientificas y, Saladillo 2468-C1440FFX, Ciudad de Buenos Aires, Argentina
Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
Departamento de Biodiversidad y Biologia Experimental, Centro de Investigaciones en Hidratos de Carbono (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Ciudad de Buenos Aires, Argentina
Palabras clave:antiinfective agent; cyclopentane derivative; defensin; glucan; jasmonic acid; oxylipin; salicylic acid; vegetable protein; article; Botrytis; chemistry; conformation; genetics; immunology; innate immunity; metabolism; microbiology; molecular genetics; pathogenicity; plant disease; plant leaf; signal transduction; tomato; transgenic plant; Anti-Infective Agents; Botrytis; Carbohydrate Conformation; Cyclopentanes; Defensins; Glucans; Immunity, Innate; Lycopersicon esculentum; Molecular Sequence Data; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Salicylic Acid; Signal Transduction; Botryotinia fuckeliana; Fungi; Lycopersicon esculentum
Año:2011
Volumen:23
Número:6
Página de inicio:2405
Página de fin:2421
DOI: http://dx.doi.org/10.1105/tpc.111.083394
Título revista:Plant Cell
Título revista abreviado:Plant Cell
ISSN:10404651
CODEN:PLCEE
CAS:glucan, 9012-72-0, 9037-91-6; jasmonic acid, 6894-38-8; salicylic acid, 63-36-5, 69-72-7; Anti-Infective Agents; Cyclopentanes; Defensins; Glucans; Oxylipins; Plant Proteins; Salicylic Acid, 69-72-7; jasmonic acid, 6894-38-8
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_10404651_v23_n6_p2405_ElOirdi.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10404651_v23_n6_p2405_ElOirdi

Referencias:

  • Abramovitch, R.B., Martin, G.B., AvrPtoB: A bacterial type III effector that both elicits and suppresses programmed cell death associated with plant immunity (2005) FEMS Microbiol. Lett, 245, pp. 1-8
  • Abuqamar, S., Chai, M.-F., Luo, H., Song, F., Mengiste, T., Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory (2008) Plant Cell, 20, pp. 1964-1983
  • Abuqamar, S., Chen, X., Dhawan, R., Bluhm, B., Salmeron, J., Lam, S., Dietrich, R.A., Mengiste, T., Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection (2006) Plant J, 48, pp. 28-44
  • Adie, B.A.T., Pérez-Pérez, J., Pérez-Pérez, M.M., Godoy, M., Sánchez-Serrano, J.-J., Schmelz, E.A., Solano, R., ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis (2007) Plant Cell, 19, pp. 1665-1681
  • Asai, S., Mase, K., Yoshioka, H., A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance (2010) Plant J, 62, pp. 911-924
  • Asselbergh, B., Curvers, K., França, S.C., Audenaert, K., Vuylsteke, M., van Breusegem, F., Höfte, M., Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis (2007) Plant Physiol, 144, pp. 1863-1877
  • Beckers, G.J.M., Spoel, S.H., Fine-tuning plant defence signalling: Salicylate versus jasmonate (2006) Plant Biol. (Stuttg.), 8, pp. 1-10
  • Bent, A.F., Mackey, D., Elicitors, effectors, and R genes: The new paradigm and a lifetime supply of questions (2007) Annu. Rev. Phytopathol, 45, pp. 399-436
  • Bouarab, K., Melton, R., Peart, J., Baulcombe, D., Osbourn, A., A saponin-detoxifying enzyme mediates suppression of plant defences (2002) Nature, 418, pp. 889-892
  • Brading, P.A., Hammond-Kosack, K.E., Parr, A., Jones, J.D.G., Salicylic acid is not required for Cf-2- and Cf-9-dependent resistance of tomato to Cladosporium fulvum (2000) Plant J, 23, pp. 305-318
  • Brooks, D.M., Bender, C.L., Kunkel, B.N., The Pseudo-monas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana (2005) Mol. Plant Pathol, 6, pp. 629-640
  • Chisholm, S., Coaker, G., Day, B., Staskawicz, B., Host-microbe interactions: Shaping the evolution of the plant immune response (2006) Cell, 124, pp. 803-814
  • Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J., Simon, A., Viaud, M., Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen (2007) FEMS Microbiol. Lett, 277, pp. 1-10
  • Clay, N.K., Adio, A.M., Denoux, C., Jander, G., Ausubel, F.M., Glucosinolate metabolites required for an Arabidopsis innate immune response (2009) Science, 323, pp. 95-101
  • Coley-Smith, J.R., Verhoeff, K., Jarvis, W.R., (1980) The Biology of Botrytis, pp. 181-218. , London: Academic Press
  • Constabel, C.P., Yip, L., Ryan, C.A., Prosystemin from potato, black nightshade, and bell pepper: Primary structure and biological activity of predicted systemin polypeptides (1998) Plant Mol. Biol, 36, pp. 55-62
  • Cui, J., Bahrami, A.K., Pringle, E.G., Hernandez-Guzman, G., Bender, C.L., Pierce, N.E., Ausubel, F.M., Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores (2005) Proc. Natl. Acad. Sci. USA, 102, pp. 1791-1796
  • Curvers, K., Seifi, H., Mouille, G., de Rycke, R., Asselbergh, B., van Hecke, A., Vanderschaeghe, D., Höfte, M., Abscisic acid deficiency causes changes in cuticle permeability and pectin composition that influence tomato resistance to Botrytis cinerea (2010) Plant Physiol, 154, pp. 847-860
  • Daayf, F., Schmitt, A., Belanger, R.R., Evidence of phyto-alexins in cucumber leaves infected with powdery mildew following treatment with leaf extracts of Reynoutria sachalinensis (1997) Plant Physiol, 113, pp. 719-727
  • de Torres-Zabala, M., Truman, W., Bennett, M.H., Lafforgue, G., Mansfield, J.W., Rodriguez Egea, P., Bogre, L., Grant, M., Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease (2007) EMBO J, 26, pp. 1434-1443
  • Doares, S.H., Narvaez-Vasquez, J., Conconi, A., Ryan, C.A., Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid (1995) Plant Physiol, 108, pp. 1741-1746
  • Dubourdieu, D., Ribereau-Gayon, P., Fournet, B., Structure of the extracellular [beta]-d-glucan from Botrytis cinerea (1981) Carbo-hydr. Res, 93, pp. 294-299
  • Durrant, W.E., Dong, X., Systemic acquired resistance (2004) Annu. Rev. Phytopathol, 42, pp. 185-209
  • El Hadrami, A., Daayf, F., Priming canola resistance to blackleg with weakly aggressive isolates leads to an activation of hydroxycinnamates (2009) Can. J. Plant Pathol, 31, pp. 393-406
  • El Oirdi, M., Bouarab, K., Plant signalling components EDS1 and SGT1 enhance disease caused by the necrotrophic pathogen Botrytis cinerea (2007) New Phytol, 175, pp. 131-139
  • El Oirdi, M., Trapani, A., Bouarab, K., The nature of tobacco resistance against Botrytis cinerea depends on the infection structures of the pathogen (2010) Environ. Microbiol, 12, pp. 239-253
  • Farmer, E.E., Ryan, C.A., Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors (1992) Plant Cell, 4, pp. 129-134
  • Ferrari, S., Plotnikova, J.M., de Lorenzo, G., Ausubel, F.M., Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4 (2003) Plant J, 35, pp. 193-205
  • Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens (2005) Annu. Rev. Phytopathol, 43, pp. 205-227
  • González, J.E., York, G.M., Walker, G.C., Rhizobium meliloti exopolysaccharides: Synthesis and symbiotic function (1996) Gene, 179, pp. 141-146
  • González-Lamothe, R., Mitchell, G., Gattuso, M., Diarra, M., Malouin, F., Bouarab, K., Plant antimicrobial agents and their effects on plant and human pathogens (2009) Int. J. Mol. Sci, 10, pp. 3400-3419
  • Govrin, E.M., Levine, A., Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR) (2002) Plant Mol. Biol, 48, pp. 267-276
  • Grant, M., Lamb, C., Systemic immunity (2006) Curr. Opin. Plant Biol, 9, pp. 414-420
  • Grant, M.R., Jones, J.D.G., Hormone (Dis)harmony moulds plant health and disease (2009) Science, 324, pp. 750-752
  • Hann, D.R., Gimenez-Ibanez, S., Rathjen, J.P., (2010) Bacterial Virulence Effectors and Their Activities. Curr. Opin. Plant Biol, 13, pp. 388-393
  • Heiling, S., Schuman, M.C., Schoettner, M., Mukerjee, P., Berger, B., Schneider, B., Jassbi, A.R., Baldwin, I.T., Jasmonate and ppHsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata (2010) Plant Cell, 22, pp. 273-292
  • Hoang, H.H., Becker, A., Gonzalez, J.E., The LuxR homo-log ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression (2004) J. Bacteriol, 186, pp. 5460-5472
  • Janjusevic, R., Abramovitch, R.B., Martin, G.B., Stebbins, C.E., A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase (2006) Science, 311, pp. 222-226
  • Jones, J.D., Dangl, J.L., The plant immune system (2006) Nature, 444, pp. 323-329
  • Jones, K.M., Kobayashi, H., Davies, B.W., Taga, M.E., Walker, G.C., How rhizobial symbionts invade plants: The Sinorhizo-bium-Medicago model (2007) Nat. Rev. Microbiol, 5, pp. 619-633
  • Jones, K.M., Sharopova, N., Lohar, D.P., Zhang, J.Q., Vandenbosch, K.A., Walker, G.C., Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 704-709
  • Kaliff, M., Staal, J., Myrenås, M., Dixelius, C., ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling (2007) Mol. Plant Microbe Interact, 20, pp. 335-345
  • Klarzynski, O., Plesse, B., Joubert, J.-M., Yvin, J.-C., Kopp, M., Kloareg, B., Fritig, B., Linear beta -1,3 glucans are elicitors of defense responses in tobacco (2000) Plant Physiol, 124, pp. 1027-1038
  • Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., den Otter, F.C., van Loon, L.C., Pieterse, C.M.J., Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation (2008) Plant Physiol, 147, pp. 1358-1368
  • Koornneef, A., Pieterse, C.M.J., Cross talk in defense signaling (2008) Plant Physiol, 146, pp. 839-844
  • Laurie-Berry, N., Joardar, V., Street, I.H., Kunkel, B.N., The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae (2006) Mol. Plant Microbe Interact, 19, pp. 789-800
  • Leon-Reyes, A., Spoel, S.H., de Lange, E.S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F.F., Pieterse, C.M.J., Ethylene modulates the role of NONEX-PRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling (2009) Plant Physiol, 149, pp. 1797-1809
  • Leon-Reyes, A., van der Does, D., de Lange, E.S., Delker, C., Wasternack, C., van Wees, S.C., Ritsema, T., Pieterse, C.M., Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway (2010) Planta, 232, pp. 1423-1432
  • Li, C., Liu, G., Xu, C., Lee, G.I., Bauer, P., Ling, H.-Q., Ganal, M.W., Howe, G.A., The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression (2003) Plant Cell, 15, pp. 1646-1661
  • Lin, W.-C., Lu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L., Cheng, C.-P., Transgenic tomato plants expressing the Arabidopsis NPR1gene display enhanced resistance to a spectrum of fungal and bacterial diseases (2004) Transgenic Res, 13, pp. 567-581
  • Liu, Y., Schiff, M., Dinesh-Kumar, S.P., Virus-induced gene silencing in tomato (2002) Plant J, 31, pp. 777-786
  • Loake, G., Grant, M., Salicylic acid in plant defence-The players and protagonists (2007) Curr. Opin. Plant Biol, 10, pp. 466-472
  • Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O., Wasternack, C., The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death (2006) Plant Physiol, 140, pp. 249-262
  • Navarro, L., Bari, R., Achard, P., Lisón, P., Nemri, A., Harberd, N.P., Jones, J.D.G., DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling (2008) Curr. Biol, 18, pp. 650-655
  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D.G., A Plant miRNA contributes to antibacterial resistance by repressing auxin signaling (2006) Science, 312, pp. 436-439
  • Ndamukong, I., Abdallat, A.A., Thurow, C., Fode, B., Zander, M., Weigel, R., Gatz, C., SA-inducible Arabidopsis gluta-redoxin interacts with TGA factors and suppresses JA-responsive PDF1.2 transcription (2007) Plant J, 50, pp. 128-139
  • Niehaus, K., Kapp, D., Puhler, A., Plant defense and delayed infection of alfalfa pseudonodules induced by an exopoly-saccharide (EPS-I)-deficient Rhizobium meliloti mutant (1993) Planta, 190, pp. 415-425
  • Nomura, K., A bacterial virulence protein suppresses host innate immunity to cause plant disease (2006) Science, 313, pp. 220-223
  • O'Donnell, P.J., Schmelz, E., Block, A., Miersch, O., Wasternack, C., Jones, J.B., Klee, H.J., Multiple hormones act sequentially to mediate a susceptible tomato pathogen defense response (2003) Plant Physiol, 133, pp. 1181-1189
  • Pearce, G., Bhattacharya, R., Chen, Y.-C., Barona, G., Yamaguchi, Y., Ryan, C.A., Isolation and characterization of hydroxy-proline-rich glycopeptide signals in black nightshade leaves (2009) Plant Physiol, 150, pp. 1422-1433
  • Pieterse, C.M.J., van Loon, L.C., NPR1: The spider in the web of induced resistance signaling pathways (2004) Curr. Opin. Plant Biol, 7, pp. 456-464
  • Ratcliff, F., Martin-Hernandez, A.M., Baulcombe, D.C., Technical advance: Tobacco rattle virus as a vector for analysis of gene function by silencing (2001) Plant J, 25, pp. 237-245
  • Rigano, L.A., Bacterial cyclic {beta}-(1,2)-glucan acts in systemic suppression of plant immune responses (2007) Plant Cell, 19, pp. 2077-2089
  • Robert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J.D.G., Pathological hormone imbalances (2007) Curr. Opin. Plant Biol, 10, pp. 372-379
  • Rowe, H.C., Walley, J.W., Corwin, J., Chan, E.K.F., Dehesh, K., Kliebenstein, D.J., Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis (2010) PLoS Pathog, e1000861, p. 6
  • Ryan, C.A., Pearce, G., Systemins: A functionally defined family of peptide signals that regulate defensive genes in Solanaceae species (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 14577-14580
  • Segarra, G., Jáuregui, O., Casanova, E., Trillas, I., Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress (2006) Phytochemistry, 67, pp. 395-401
  • Shah, J., Plants under attack: Systemic signals in defence (2009) Curr. Opin. Plant Biol, 12, pp. 459-464
  • Soto, M.J., Sanjuan, J., Olivares, J., Rhizobia and plant-pathogenic bacteria: Common infection weapons (2006) Microbiology, 152, pp. 3167-3174
  • Spoel, S.H., Dong, X., Making sense of hormone crosstalk during plant immune responses (2008) Cell Host Microbe, 3, pp. 348-351
  • Spoel, S.H., Johnson, J.S., Dong, X., Regulation of tradeoffs between plant defenses against pathogens with different lifestyles (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 18842-18847
  • Spoel, S.H., NPR1 modulates cross-talk between salicy-late- and jasmonate-dependent defense pathways through a novel function in the cytosol (2003) Plant Cell, 15, pp. 760-770
  • Stahmann, K.P., Monschau, N., Sahm, H., Koschel, A., Gawronski, M., Conrad, H., Springer, T., Kopp, F., Structural properties of native and sonicated cinerean, a [beta]-(1/3)(1/6)- glucan produced by Botrytis cinerea (1995) Carbohydr. Res, 266, pp. 115-128
  • Stefanato, F.L., Abou-Mansour, E., Buchala, A., Kretschmer, M., Mosbach, A., Hahn, M., Bochet, C.G., Schoonbeek, H.J., The ABC transporter BcatrB from Botrytis cinerea exports camalexin and is a virulence factor on Arabidopsis thaliana (2009) Plant J, 58, pp. 499-510
  • Sun, T.-P., Gubler, F., Molecular mechanism of gibberellins signaling in plants (2004) Annu. Rev. Plant Biol, 55, pp. 197-223
  • Truman, W.M., Bennett, M.H., Turnbull, C.G.N., Grant, M.R., Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic compounds (2010) Plant Physiol, 152, pp. 1562-1573
  • van Loon, L.C., Rep, M., Pieterse, C.M.J., Significance of inducible defense-related proteins in infected plants (2006) Annu. Rev. Phytopathol, 44, pp. 135-162
  • van Wees, S.C.M., de Swart, E.A.M., van Pelt, J.A., van Loon, L.C., Pieterse, C.M.J., Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 8711-8716
  • Verhage, A., van Wees, S.C.M., Pieterse, C.M.J., Plant immunity: It's the hormones talking, but what do they say? (2010) Plant Physiol, 154, pp. 536-540
  • Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X., Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway (2007) Curr. Biol, 17, pp. 1784-1790
  • Yuan, Y., Zhong, S., Li, Q., Zhu, Z., Lou, Y., Wang, L., Wang, J., He, Z., Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility (2007) Plant Biotechnol. J, 5, pp. 313-324
  • Yun, M.H., Torres, P.S., El-Oirdi, M., Rigano, L.A., Gonzalez-Lamothe, R., Marano, M.R., Castagnaro, A.P., Vojnov, A.A., Xanthan induces plant susceptibility by suppressing callose deposition (2006) Plant Physiol, 141, pp. 178-187
  • Zarate, S.I., Kempema, L.A., Walling, L.L., Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses (2007) Plant Physiol, 143, pp. 866-875
  • Zipfel, C., Early molecular events in PAMP-triggered immunity (2009) Curr. Opin. Plant Biol, 12, pp. 414-420

Citas:

---------- APA ----------
El-Oirdi, M., El-Rahman, T.A., Rigano, L., El-Hadrami, A., Rodriguez, M.C., Daayf, F., Vojnov, A.,..., Bouarab, K. (2011) . Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in Tomato. Plant Cell, 23(6), 2405-2421.
http://dx.doi.org/10.1105/tpc.111.083394
---------- CHICAGO ----------
El-Oirdi, M., El-Rahman, T.A., Rigano, L., El-Hadrami, A., Rodriguez, M.C., Daayf, F., et al. "Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in Tomato" . Plant Cell 23, no. 6 (2011) : 2405-2421.
http://dx.doi.org/10.1105/tpc.111.083394
---------- MLA ----------
El-Oirdi, M., El-Rahman, T.A., Rigano, L., El-Hadrami, A., Rodriguez, M.C., Daayf, F., et al. "Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in Tomato" . Plant Cell, vol. 23, no. 6, 2011, pp. 2405-2421.
http://dx.doi.org/10.1105/tpc.111.083394
---------- VANCOUVER ----------
El-Oirdi, M., El-Rahman, T.A., Rigano, L., El-Hadrami, A., Rodriguez, M.C., Daayf, F., et al. Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in Tomato. Plant Cell. 2011;23(6):2405-2421.
http://dx.doi.org/10.1105/tpc.111.083394