Artículo

Accialini, P.; Irusta, G.; Bechis, A.; Bas, D.; Parborell, F.; Abramovich, D.; Tesone, M. "Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats" (2017) Molecular Reproduction and Development. 84(8):719-730
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tankyrases are physiological regulators of Axin, a protein involved in several cellular processes, including Wnt signaling. Here, we investigated the effect of a specific Tankyrase inhibitor (XAV939) in follicular-luteal dynamics, and its possible relationship with ovarian vascular development. Studies were designed to analyze the effect of intrabursa administration of XAV939 in gonadotropin-treated prepubertal rats. In particular, we examined follicle and corpus luteum development, steroidogenesis, angiogenic markers, and apoptotic parameters. We found that in vivo inhibition of Wnt signaling impaired corpus luteum development, with a decrease in the number of corpora lutea balanced by a high number of cysts; decreased circulating progesterone levels, likely due to a decrease in Steroidogenic acute regulatory protein content in the corpus luteum; and increased pro-apoptotic parameters. In addition, Extracellular signal-regulated kinase phosphorylation, Vascular endothelium growth factor 120 content, and endothelial cell area were diminished in corpora lutea of inhibitor-treated ovaries. Thus, Wnt/β-catenin signaling appears to participate in the regulation of corpus luteum development and luteal cell function. © 2017 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats
Autor:Accialini, P.; Irusta, G.; Bechis, A.; Bas, D.; Parborell, F.; Abramovich, D.; Tesone, M.
Filiación:Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
Departamento de Quıímica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:luteinization; progesterone; steroidogenesis; Tankyrase inhibitor; Wnt/β-catenin; 7,8 dihydro 2 [4 (trifluoromethyl)phenyl] 5h thiopyrano[4,3 d]pyrimidin 4 ol; beta catenin; gonadotropin; mitogen activated protein kinase; progesterone; protein kinase B; steroidogenic acute regulatory protein; tankyrase; vasculotropin; Wnt protein; beta catenin; gonadotropin; progesterone; tankyrase; Wnt protein; angiogenesis; animal experiment; animal tissue; antral follicle; apoptosis; Article; cell proliferation; controlled study; corpus luteum; enzyme inhibition; enzyme phosphorylation; female; in vivo study; luteal cell; nonhuman; ovary follicle development; priority journal; progesterone blood level; rat; steroidogenesis; Wnt signaling pathway; animal; antagonists and inhibitors; corpus luteum; metabolism; physiology; signal transduction; Animals; beta Catenin; Corpus Luteum; Female; Gonadotropins; Progesterone; Rats; Signal Transduction; Tankyrases; Wnt Proteins
Año:2017
Volumen:84
Número:8
Página de inicio:719
Página de fin:730
DOI: http://dx.doi.org/10.1002/mrd.22853
Título revista:Molecular Reproduction and Development
Título revista abreviado:Mol. Reprod. Dev.
ISSN:1040452X
CODEN:MREDE
CAS:7,8 dihydro 2 [4 (trifluoromethyl)phenyl] 5h thiopyrano[4,3 d]pyrimidin 4 ol, 284028-89-3; gonadotropin, 63231-54-9; mitogen activated protein kinase, 142243-02-5; progesterone, 57-83-0; protein kinase B, 148640-14-6; steroidogenic acute regulatory protein, 168183-61-7; tankyrase, 9055-67-8; vasculotropin, 127464-60-2; beta Catenin; Gonadotropins; Progesterone; Tankyrases; Wnt Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1040452X_v84_n8_p719_Accialini

Referencias:

  • Abedini, A., Zamberlam, G., Boerboom, D., Price, C.A., Non-canonical WNT5A is a potential regulator of granulosa cell function in cattle (2015) Molecular and Cellular Endocrinology, 403, pp. 39-45
  • Abramovich, D., Irusta, G., Bas, D., Cataldi, N.I., Parborell, F., Tesone, M., Angiopoietins/TIE2 system and VEGF are involved in ovarian function in a DHEA rat model of polycystic ovary syndrome (2012) Endocrinology, 153 (7), pp. 3446-3456
  • Abramovich, D., Parborell, F., Tesone, M., Effect of a vascular endothelial growth factor (VEGF) inhibitory treatment on the folliculogenesis and ovarian apoptosis in gonadotropin-treated prepubertal rats (2006) Biology of Reproduction, 75 (3), pp. 434-441
  • Accialini, P., Hernandez, S.F., Bas, D., Pazos, M.C., Irusta, G., Abramovich, D., Tesone, M., A link between Notch and progesterone maintains the functionality of the rat corpus luteum (2015) Reproduction, 149 (1), pp. 1-10
  • Andreu, C., Parborell, F., Vanzulli, S., Chemes, H., Tesone, M., Regulation of follicular luteinization by a gonadotropin-releasing hormone agonist: Relationship between steroidogenesis and apoptosis (1998) Molecular Reproduction and Development, 51 (3), pp. 287-294
  • Bachelot, A., Binart, N., Corpus luteum development: Lessons from genetic models in mice (2005) Current Topics in Developmental Biology, 68, pp. 49-84
  • Boyer, A., Goff, A.K., Boerboom, D., WNT signaling in ovarian follicle biology and tumorigenesis (2010) Trends in Endocrinology and Metabolism, 21 (1), pp. 25-32
  • Boyer, A., Lapointe, E., Zheng, X., Cowan, R.G., Li, H., Quirk, S.M., Boerboom, D., WNT4 is required for normal ovarian follicle development and female fertility (2010) FASEB Journal, 24 (8), pp. 3010-3025
  • Carmeliet, P., Jain, R.K., Molecular mechanisms and clinical applications of angiogenesis (2011) Nature, 473 (7347), pp. 298-307
  • Cook, B.D., Dynek, J.N., Chang, W., Shostak, G., Smith, S., Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres (2002) Molecular and Cellular Biology, 22 (1), pp. 332-342
  • Christenson, L.K., Stouffer, R.L., Follicle-stimulating hormone and luteinizing hormone/chorionic gonadotropin stimulation of vascular endothelial growth factor production by macaque granulosa cells from pre- and periovulatory follicles (1997) The Journal of Clinical Endocrinology and Metabolism, 82 (7), pp. 2135-2142
  • Chun, S.Y., Billig, H., Tilly, J.L., Furuta, I., Tsafriri, A., Hsueh, A.J., Gonadotropin suppression of apoptosis in cultured preovulatory follicles: Mediatory role of endogenous insulin-like growth factor I (1994) Endocrinology, 135 (5), pp. 1845-1853
  • Grigson, E.R., Ozerova, M., Pisklakova, A., Liu, H., Sullivan, D.M., Nefedova, Y., Canonical Wnt pathway inhibitor ICG-001 induces cytotoxicity of multiple myeloma cells in Wnt-independent manner (2015) PLoS ONE, 10 (1)
  • Guo, X., Ramirez, A., Waddell, D.S., Li, Z., Liu, X., Wang, X.F., Axin and GSK3- control Smad3 protein stability and modulate TGF- signaling (2008) Genes & Development, 22 (1), pp. 106-120
  • Gupta, P.S., Folger, J.K., Rajput, S.K., Lv, L., Yao, J., Ireland, J.J., Smith, G.W., Regulation and regulatory role of WNT signaling in potentiating FSH action during bovine dominant follicle selection (2014) PLoS ONE, 9 (6)
  • Hernandez, F., Peluffo, M.C., Bas, D., Stouffer, R.L., Tesone, M., Local effects of the sphingosine 1-phosphate on prostaglandin F2alpha-induced luteolysis in the pregnant rat (2009) Molecular Reproduction and Development, 76, pp. 1153-1164
  • Hernandez Gifford, J.A., The role of WNT signaling in adult ovarian folliculogenesis (2015) Reproduction, 150 (4), pp. R137-R148
  • Hsiao, S.J., Smith, S., Tankyrase function at telomeres, spindle poles, and beyond (2008) Biochimie, 90 (1), pp. 83-92
  • Hsieh, M., Johnson, M.A., Greenberg, N.M., Richards, J.S., Regulated expression of Wnts and Frizzleds at specific stages of follicular development in the rodent ovary (2002) Endocrinology, 143 (3), pp. 898-908
  • Hsieh, M., Mulders, S.M., Friis, R.R., Dharmarajan, A., Richards, J.S., Expression and localization of secreted frizzled-related protein-4 in the rodent ovary: Evidence for selective up-regulation in luteinized granulosa cells (2003) Endocrinology, 144 (10), pp. 4597-4606
  • Huang, S.M., Mishina, Y.M., Liu, S., Cheung, A., Stegmeier, F., Michaud, G.A., Cong, F., Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling (2009) Nature, 461 (7264), pp. 614-620
  • Hunzicker-Dunn, M., Maizels, E.T., FSH signaling pathways in immature granulosa cells that regulate target gene expression: Branching out from protein kinase A (2006) Cellular Signalling, 18 (9), pp. 1351-1359
  • Irusta, G., Parborell, F., Peluffo, M., Manna, P.R., Gonzalez-Calvar, S.I., Calandra, R., Tesone, M., Steroidogenic acute regulatory protein in ovarian follicles of gonadotropin-stimulated rats is regulated by a gonadotropin-releasing hormone agonist (2003) Biology of Reproduction, 68 (5), pp. 1577-1583
  • Kaminker, P.G., Kim, S.H., Taylor, R.D., Zebarjadian, Y., Funk, W.D., Morin, G.B., Campisi, J., TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression (2001) The Journal of Biological Chemistry, 276 (38), pp. 35891-35899
  • Korsmeyer, S.J., Bc l-2 initiates a new category of oncogenes: Regulators of cell death (1992) Blood, 80 (4), pp. 879-886
  • Li, Q., Lin, S., Wang, X., Lian, G., Lu, Z., Guo, H., Lin, S.C., Axin determines cell fate by controlling the p53 activation threshold after DNA damage (2009) Nature Cell Biology, 11 (9), pp. 1128-1134
  • Lieberman, S., Greenfield, N.J., Wolfson, A., A heuristic proposal for understanding steroidogenic processes (1984) Endocrine Reviews, 5 (1), pp. 128-148
  • Liu, W., Rui, H., Wang, J., Lin, S., He, Y., Chen, M., Lin, S.C., Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia (2006) EMBO Journal, 25 (8), pp. 1646-1658
  • Logan, C.Y., Nusse, R., The Wnt signaling pathway in development and disease (2004) Annual Review of Cell and Developmental Biology, 20, pp. 781-810
  • Lyons, R.J., Deane, R., Lynch, D.K., Ye, Z.S., Sanderson, G.M., Eyre, H.J., Daly, R.J., Identification of a novel human tankyrase through its interaction with the adaptor protein Grb14 (2001) The Journal of Biological Chemistry, 276 (20), pp. 17172-17180
  • Maes, C., Carmeliet, P., Moermans, K., Stockmans, I., Smets, N., Collen, D., Carmeliet, G., Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188 (2002) Mechanisms of Development, 111 (1-2), pp. 61-73
  • Maga, G., Hubscher, U., Proliferating cell nuclear antigen (PCNA): A dancer with many partners (2003) Journal of Cell Science, 116, pp. 3051-3060
  • Maisonpierre, P.C., Suri, C., Jones, P.F., Bartunkova, S., Wiegand, S.J., Radziejewski, C., Yancopoulos, G.D., Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis (1997) Science, 277 (5322), pp. 55-60
  • Martinez-Chequer, J.C., Stouffer, R.L., Hazzard, T.M., Patton, P.E., Molskness, T.A., Insulin-like growth factors-1 and −2, but not hypoxia, synergize with gonadotropin hormone to promote vascular endothelial growth factor-A secretion by monkey granulosa cells from preovulatory follicles (2003) Biology of Reproduction, 68 (4), pp. 1112-1118
  • Pascuali, N., Scotti, L., Abramovich, D., Irusta, G., Di Pietro, M., Bas, D., Parborell, F., Inhibition of platelet-derived growth factor (PDGF) receptor affects follicular development and ovarian proliferation, apoptosis and angiogenesis in prepubertal eCG-treated rats (2015) Molecular and Cellular Endocrinology, 412, pp. 148-158
  • Peluso, J.J., Luciano, A.M., Pappalardo, A., White, B.A., Cellular and molecular mechanisms that mediate insulin-dependent rat granulosa cell mitosis (1995) Biology of Reproduction, 52 (1), pp. 124-130
  • Peng, L., Arensburg, J., Orly, J., Payne, A.H., The murine 3beta-hydroxysteroid dehydrogenase (3beta-HSD) gene family: A postulated role for 3beta-HSD VI during early pregnancy (2002) Molecular and Cellular Endocrinology, 187 (1-2), pp. 213-221
  • Rasband, W.S., (2007), http://rsb.info.nih.gov/ij/,1997, . ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA; Redmer, D.A., Reynolds, L.P., Angiogenesis in the ovary (1996) Reviews of Reproduction, 1 (3), pp. 182-192
  • Reis, M., Liebner, S., Wnt signaling in the vasculature (2013) Experimental Cell Research, 319 (9), pp. 1317-1323
  • Roy, L., McDonald, C.A., Jiang, C., Maroni, D., Zeleznik, A.J., Wyatt, T.A., Davis, J.S., Convergence of 3′, 5′-cyclic adenosine 5′-monophosphate/protein kinase A and glycogen synthase kinase-3beta/beta-catenin signaling in corpus luteum progesterone synthesis (2009) Endocrinology, 150 (11), pp. 5036-5045
  • Scotti, L., Parborell, F., Irusta, G., De Zuñiga, I., Bisioli, C., Pettorossi, H., Abramovich, D., Platelet-derived growth factor BB and DD and angiopoietin1 are altered in follicular fluid from polycystic ovary syndrome patients (2014) Molecular Reproduction and Development, 81 (8), pp. 748-756
  • Smith, S., Giriat, I., Schmitt, A., de Lange, T., Tankyrase, a poly(ADP-ribose) polymerase at human telomeres (1998) Science, 282 (5393), pp. 1484-1487
  • Stocco, C., Telleria, C., Gibori, G., The molecular control of corpus luteum formation, function, and regression (2007) Endocrine Reviews, 28 (1), pp. 117-149
  • Stocco, D.M., Clark, B.J., Regulation of the acute production of steroids in steroidogenic cells (1996) Endocrine Reviews, 17 (3), pp. 221-244
  • Suri, C., Jones, P.F., Patan, S., Bartunkova, S., Maisonpierre, P.C., Davis, S., Yancopoulos, G.D., Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis (1996) Cell, 87 (7), pp. 1171-1180
  • Tamanini, C., De Ambrogi, M., Angiogenesis in developing follicle and corpus luteum (2004) Reproduction in Domestic Animals, 39 (4), pp. 206-216
  • Tesone, M., Stouffer, R.L., Borman, S.M., Hennebold, J.D., Molskness, T.A., Vascular endothelial growth factor (VEGF) production by the monkey corpus luteum during the menstrual cycle: Isoform-selective messenger RNA expression in vivo and hypoxia-regulated protein secretion in vitro (2005) Biology of Reproduction, 73 (5), pp. 927-934
  • Tilly, J.L., Tilly, K.I., Inhibitors of oxidative stress mimic the ability of follicle- stimulating hormone to suppress apoptosis in cultured rat ovarian follicles (1995) Endocrinology, 136 (1), pp. 242-252
  • Tomizuka, K., Horikoshi, K., Kitada, R., Sugawara, Y., Iba, Y., Kojima, A., Kakitani, M., R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling (2008) Human Molecular Genetics, 17 (9), pp. 1278-1291
  • Vainio, S., Heikkila, M., Kispert, A., Chin, N., McMahon, A.P., Female development in mammals is regulated by Wnt-4 signalling (1999) Nature, 397 (6718), pp. 405-409
  • Waterman, M.R., Simpson, E.R., Regulation of the biosynthesis of cytochromes P-450 involved in steroid hormone synthesis (1985) Molecular and Cellular Endocrinology, 39 (2), pp. 81-89
  • Woodruff, T.K., Lyon, R.J., Hansen, S.E., Rice, G.C., Mather, J.P., Inhibin and activin locally regulate rat ovarian folliculogenesis (1990) Endocrinology, 127 (6), pp. 3196-3205

Citas:

---------- APA ----------
Accialini, P., Irusta, G., Bechis, A., Bas, D., Parborell, F., Abramovich, D. & Tesone, M. (2017) . Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats. Molecular Reproduction and Development, 84(8), 719-730.
http://dx.doi.org/10.1002/mrd.22853
---------- CHICAGO ----------
Accialini, P., Irusta, G., Bechis, A., Bas, D., Parborell, F., Abramovich, D., et al. "Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats" . Molecular Reproduction and Development 84, no. 8 (2017) : 719-730.
http://dx.doi.org/10.1002/mrd.22853
---------- MLA ----------
Accialini, P., Irusta, G., Bechis, A., Bas, D., Parborell, F., Abramovich, D., et al. "Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats" . Molecular Reproduction and Development, vol. 84, no. 8, 2017, pp. 719-730.
http://dx.doi.org/10.1002/mrd.22853
---------- VANCOUVER ----------
Accialini, P., Irusta, G., Bechis, A., Bas, D., Parborell, F., Abramovich, D., et al. Tankyrase inhibition regulates corpus luteum development and luteal function in gonadotropin-treated rats. Mol. Reprod. Dev. 2017;84(8):719-730.
http://dx.doi.org/10.1002/mrd.22853