Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Sperm structure has evolved to be very compact and compartmentalized to enable the motor (the flagellum) to transport the nuclear cargo (the head) to the egg. Furthermore, sperm do not exhibit progressive motility and are not capable of undergoing acrosomal exocytosis immediately following their release into the lumen of the seminiferous tubules, the site of spermatogenesis in the testis. These cells require maturation in the epididymis and female reproductive tract before they become competent for fertilization. Here we review aspects of the structural and molecular mechanisms that promote forward motility, hyperactivated motility, and acrosomal exocytosis. As a result, we favor a model articulated by others that the flagellum senses external signals and communicates with the head by second messengers to affect sperm functions such as acrosomal exocytosis. We hope this conceptual framework will serve to stimulate thinking and experimental investigations concerning the various steps of activating a sperm from a quiescent state to a gamete that is fully competent and committed to fertilization. The three themes of compartmentalization, competence, and commitment are key to an understanding of the molecular mechanisms of sperm activation. Comprehending these processes will have a considerable impact on the management of fertility problems, the development of contraceptive methods, and, potentially, elucidation of analogous processes in other cell systems. © 2011 Wiley Periodicals, Inc.


Documento: Artículo
Título:Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility
Autor:Buffone, M.G.; Ijiri, T.W.; Cao, W.; Merdiushev, T.; Aghajanian, H.K.; Gerton, G.L.
Filiación:Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
Instituto de Biologia y Medicina Experimental, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina
Palabras clave:2 arachidonoylglycerol; A kinase anchoring protein 3; A kinase anchoring protein 4; adenosine triphosphate; adenosine triphosphate sensitive potassium channel; adenylate cyclase; adenylate cyclase 2; adenylate cyclase 3; adenylate cyclase 8; anandamide; calcium; cannabinoid 1 receptor; cation channel; cell protein; chloride channel; CRISP1 protein; cyclic AMP; cyclic AMP dependent protein kinase anchoring protein; forskolin; glyceraldehyde 3 phosphate dehydrogenase; glyceraldehyde 3 phosphate dehydrogenase S; glycogen synthase kinase 3; inwardly rectifying potassium channel subunit Kir6.1; inwardly rectifying potassium channel subunit Kir6.2; phosphoglycerate kinase; phosphoglycerate kinase 2; proton; SLC9A10 protein; sperm associated cation channel 1; unclassified drug; ZP3R protein; acrosomal exocytosis; acrosome reaction; actin polymerization; alkalinization; cell nucleus membrane; cell swelling; cellular distribution; depolymerization; disulfide bond; epididymis; exocytosis; fertilization; glycolysis; human; hyperpolarization; nonhuman; pH; potassium current; priority journal; protein expression; protein localization; protein phosphorylation; review; spermatid; spermatogenesis; spermatozoon capacitation; spermatozoon maturation; spermatozoon motility; spermatozoon tail; Acrosome; Acrosome Reaction; Animals; Female; Humans; Male; Mice; Models, Biological; Ovum; Sperm Capacitation; Sperm Motility; Sperm Tail; Spermatozoa
Página de inicio:4
Página de fin:18
Título revista:Molecular Reproduction and Development
Título revista abreviado:Mol. Reprod. Dev.
CAS:adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; adenylate cyclase, 9012-42-4; anandamide, 94421-68-8; calcium, 14092-94-5, 7440-70-2; cyclic AMP, 60-92-4; forskolin, 66575-29-9; glyceraldehyde 3 phosphate dehydrogenase, 9001-50-7; phosphoglycerate kinase, 9001-83-6; proton, 12408-02-5, 12586-59-3


  • Acevedo, J.J., Mendoza-Lujambio, I., de la Vega-Beltrán, J.L., Treviño, C.L., Felix, R., Darszon, A., KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation (2006) Dev Biol, 289, pp. 395-405
  • Aparicio, I.M., Bragado, M.J., Gil, M.C., Garcia-Herreros, M., Gonzalez-Fernandez, L., Tapia, J.A., Garcia-Marin, L.J., Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3alpha (2007) Reproduction, 134, pp. 435-444
  • Arnoult, C., Cardullo, R.A., Lemos, J.R., Florman, H.M., Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida (1996) Proc Natl Acad Sci USA, 93, pp. 13004-13009
  • Avenarius, M.R., Hildebrand, M.S., Zhang, Y., Meyer, N.C., Smith, L.L.H., Kahrizi, K., Najmabadi, H., Smith, R.J.H., Human male infertility caused by mutations in the CATSPER1 channel protein (2009) Am J Hum Genet, 84, pp. 505-510
  • Baibakov, B., Gauthier, L., Talbot, P., Rankin, T.L., Dean, J., Sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis (2007) Development, 134, pp. 933-943
  • Baker, M.A., Witherdin, R., Hetherington, L., Cunningham-Smith, K., Aitken, R.J., Identification of post-translational modifications that occur during sperm maturation using difference in two-dimensional gel electrophoresis (2005) Proteomics, 5, pp. 1003-1012
  • Baxendale, R.W., Fraser, L.R., Evidence for multiple distinctly localized adenylyl cyclase isoforms in mammalian spermatozoa (2003) Mol Reprod Dev, 66, pp. 181-189
  • De Blas, G.A., Roggero, C.M., Tomes, C.N., Mayorga, L.S., Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis (2005) PLoS Biol, 3, pp. e323
  • Bloodgood, R.A., Sensory reception is an attribute of both primary cilia and motile cilia (2010) J Cell Sci, 123, pp. 505-509
  • Branham, M.T., Bustos, M.A., De Blas, G.A., Rehmann, H., Zarelli, V.E.P., Treviño, C.L., Darszon, A., Tomes, C.N., Epac activates the small G proteins Rap1 and Rab3A to achieve exocytosis (2009) J Biol Chem, 284, pp. 24825-24839
  • Branham, M.T., Mayorga, L.S., Tomes, C.N., Calcium-induced acrosomal exocytosis requires cAMP acting through a protein kinase A-independent, Epac-mediated pathway (2006) J Biol Chem, 281, pp. 8656-8666
  • Brener, E., Rubinstein, S., Cohen, G., Shternall, K., Rivlin, J., Breitbart, H., Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction (2003) Biol Reprod, 68, pp. 837-845
  • Buffone, M.G., Foster, J.A., Gerton, G.L., The role of the acrosomal matrix in fertilization (2008) Int J Dev Biol, 52, pp. 511-522
  • Buffone, M.G., Rodriguez-Miranda, E., Storey, B.T., Gerton, G.L., Acrosomal exocytosis of mouse sperm progresses in a consistent direction in response to zona pellucida (2009) J Cell Physiol, 220, pp. 611-620
  • Burgoyne, R.D., Morgan, A., Secretory granule exocytosis (2003) Physiol Rev, 83, pp. 581-632
  • Burton, K.A., Treash-Osio, B., Muller, C.H., Dunphy, E.L., McKnight, G.S., Deletion of type IIalpha regulatory subunit delocalizes protein kinase A in mouse sperm without affecting motility or fertilization (1999) J Biol Chem, 274, pp. 24131-24136
  • Cabello-Agüeros, J.F., Hernández-González, E.O., Mújica, A., The role of F-actin cytoskeleton-associated gelsolin in the guinea pig capacitation and acrosome reaction (2003) Cell Motil Cytoskeleton, 56, pp. 94-108
  • Calvin, H.I., Bedford, J.M., Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis (1971) J Reprod Fertil Suppl, 13, pp. 65-75
  • Carlson, A.E., Quill, T.A., Westenbroek, R.E., Schuh, S.M., Hille, B., Babcock, D.F., Identical phenotypes of CatSper1 and CatSper2 null sperm (2005) J Biol Chem, 280, pp. 32238-32244
  • Carrera, A., Gerton, G.L., Moss, S.B., The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins (1994) Dev Biol, 165, pp. 272-284
  • Castellani-Ceresa, L., Mattioli, M., Radaelli, G., Barboni, B., Brivio, M.F., Actin polymerization in boar spermatozoa: fertilization is reduced with use of cytochalasin D (1993) Mol Reprod Dev, 36, pp. 203-211
  • Cesario, M.M., Bartles, J.R., Compartmentalization, processing and redistribution of the plasma membrane protein CE9 on rodent spermatozoa. Relationship of the annulus to domain boundaries in the plasma membrane of the tail (1994) J Cell Sci, 107, pp. 561-570
  • Chan, H.C., Shi, Q.X., Zhou, C.X., Wang, X.F., Xu, W.M., Chen, W.Y., Chen, A.J., Yuan, Y.Y., Critical role of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm (2006) Mol Cell Endocrinol, 250, pp. 106-113
  • Chen, W.Y., Xu, W.M., Chen, Z.H., Ni, Y., Yuan, Y.Y., Zhou, S.C., Zhou, W.W., Shi, Q.X., Cl - is required for HCO3 - entry necessary for sperm capacitation in guinea pig: Involvement of a Cl -/HCO3 - exchanger (SLC26A3) and CFTR (2009) Biol Reprod, 80, pp. 115-123
  • Cobellis, G., Ricci, G., Cacciola, G., Orlando, P., Petrosino, S., Cascio, M.G., Bisogno, T., Di Marzo, V., A gradient of 2-arachidonoylglycerol regulates mouse epididymal sperm cell start-up (2010) Biol Reprod, 82, pp. 451-458
  • Cornwall, G.A., Vindivich, D., Tillman, S., Chang, T.S., The effect of sulfhydryl oxidation on the morphology of immature hamster epididymal spermatozoa induced to acquire motility in vitro (1988) Biol Reprod, 39, pp. 141-155
  • Cornwall, G.A., New insights into epididymal biology and function (2009) Hum Reprod Update, 15, pp. 213-227
  • Costello, S., Michelangeli, F., Nash, K., Lefievre, L., Morris, J., Machado-Oliveira, G., Barratt, C., Publicover, S., Ca2+-stores in sperm: their identities and functions (2009) Reproduction, 138, pp. 425-437
  • Dacheux, J.L., Belghazi, M., Lanson, Y., Dacheux, F., Human epididymal secretome and proteome (2006) Mol Cell Endocrinol, 250, pp. 36-42
  • Dacheux, J.-L., Gatti, J.L., Dacheux, F., Contribution of epididymal secretory proteins for spermatozoa maturation (2003) Microsc Res Tech, 61, pp. 7-17
  • Danshina, P.V., Geyer, C.B., Dai, Q., Goulding, E.H., Willis, W.D., Kitto, G.B., McCarrey, J.R., O'Brien, D.A., Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice (2010) Biol Reprod, 82, pp. 136-145
  • Demarco, I.A., Espinosa, F., Edwards, J., Sosnik, J., de la Vega-Beltrán, J.L., Hockensmith, J.W., Kopf, G.S., Visconti, P.E., Involvement of a Na+/HCO-3 cotransporter in mouse sperm capacitation (2003) J Biol Chem, 278, pp. 7001-7009
  • Eddy, E.M., Chapter 1. The spermatozoon (2006) Knobil and Neill's physiology of reproduction, 3e, pp. 3-54. , Knobil E, editor. Amsterdam; Boston: Elsevier
  • Escoffier, J., Boisseau, S., Serres, C., Chen, C.-C., Kim, D., Stamboulian, S., Shin, H.-S., Arnoult, C., Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice (2007) J Cell Physiol, 212, pp. 753-763
  • Esposito, G., Jaiswal, B.S., Xie, F., Krajnc-Franken, M.A.M., Robben, T.J.A.A., Strik, A.M., Kuil, C., Gossen, J.A., Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect (2004) Proc Natl Acad Sci USA, 101, pp. 2993-2998
  • Finkelstein, M., Etkovitz, N., Breitbart, H., Role and regulation of sperm gelsolin prior to fertilization (2010) J Biol Chem, 285, pp. 39702-39709
  • Flaherty, S.P., Winfrey, V.P., Olson, G.E., Localization of actin in human, bull, rabbit, and hamster sperm by immunoelectron microscopy (1988) Anat Rec, 221, pp. 599-610
  • Florman, H.M., Ducibella, T., Fertilization in mammals (2006) Knobil and Neill's Physiology of Reproduction, 3e, pp. 55-112. , Knobil E, Neill JD, editors. Amsterdam; Boston: Elsevier
  • Fukami, K., Yoshida, M., Inoue, T., Kurokawa, M., Fissore, R.A., Yoshida, N., Mikoshiba, K., Takenawa, T., Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm (2003) J Cell Biol, 161, pp. 79-88
  • Fulcher, K.D., Mori, C., Welch, J.E., O'Brien, D.A., Klapper, D.G., Eddy, E.M., Characterization of Fsc1 cDNA for a mouse sperm fibrous sheath component (1995) Biol Reprod, 52, pp. 41-49
  • Glassner, M., Jones, J., Kligman, I., Woolkalis, M.J., Gerton, G.L., Kopf, G.S., Immunocytochemical and biochemical characterization of guanine nucleotide-binding regulatory proteins in mammalian spermatozoa (1991) Dev Biol, 146, pp. 438-450
  • Gu, Y., Kirkman-Brown, J.C., Korchev, Y., Barratt, C.L.R., Publicover, S.J., Multi-state, 4-aminopyridine-sensitive ion channels in human spermatozoa (2004) Dev Biol, 274, pp. 308-317
  • Hernández-González, E.O., Lecona-Valera, A.N., Escobar-Herrera, J., Mújica, A., Involvement of an F-actin skeleton on the acrosome reaction in guinea pig spermatozoa (2000) Cell Motil Cytoskeleton, 46, pp. 43-58
  • Hernández-González, E.O., Sosnik, J., Edwards, J., Acevedo, J.J., Mendoza-Lujambio, I., López-González, I., Demarco, I., Visconti, P.E., Sodium and epithelial sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm (2006) J Biol Chem, 281, pp. 5623-5633
  • Hernández-González, E.O., Treviño, C.L., Castellano, L.E., de la Vega-Beltrán, J.L., Ocampo, A.Y., Wertheimer, E., Visconti, P.E., Darszon, A., Involvement of cystic fibrosis transmembrane conductance regulator in mouse sperm capacitation (2007) J Biol Chem, 282, pp. 24397-24406
  • Herrick, S.B., Schweissinger, D.L., Kim, S.-W., Bayan, K.R., Mann, S., Cardullo, R.A., The acrosomal vesicle of mouse sperm is a calcium store (2005) J Cell Physiol, 202, pp. 663-671
  • Hess, K.C., Jones, B.H., Marquez, B., Chen, Y., Ord, T.S., Kamenetsky, M., Miyamoto, C., Moss, S.B., The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization (2005) Dev Cell, 9, pp. 249-259
  • Hirohashi, N., Gerton, G.L., Buffone, M.G., Video imaging of the sperm acrosome reaction during in vitro fertilization (2011) Comm Integ Biol, 4, pp. 471-476
  • Ho, H.-C., Suarez, S.S., Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility (2003) Biol Reprod, 68, pp. 1590-1596
  • Ho, K., Wolff, C.A., Suarez, S.S., CatSper-null mutant spermatozoa are unable to ascend beyond the oviductal reservoir (2009) Reprod Fertil Dev, 21, pp. 345-350
  • Hu, Q., Milenkovic, L., Jin, H., Scott, M.P., Nachury, M.V., Spiliotis, E.T., Nelson, W.J., A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution (2010) Science, 329, pp. 436-439
  • Jimenez, T., Sanchez, G., McDermott, J.P., Nguyen, A.-N., Kumar, T.R., Blanco, G., Increased expression of the Na,K-ATPase alpha4 isoform enhances sperm motility in transgenic mice (2011) Biol Reprod, 84, pp. 153-161
  • Jin, J., Jin, N., Zheng, H., Ro, S., Tafolla, D., Sanders, K.M., Yan, W., Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse (2007) Biol Reprod, 77, pp. 37-44
  • Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S.A., Chiba, K., Hirohashi, N., Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization (2011) Proc Natl Acad Sci, 108, pp. 4892-4896
  • Kamenetsky, M., Middelhaufe, S., Bank, E.M., Levin, L.R., Buck, J., Steegborn, C., Molecular details of cAMP generation in mammalian cells: a tale of two systems (2006) J Mol Biol, 362, pp. 623-639
  • Kim, K.-S., Gerton, G.L., Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm (2003) Dev Biol, 264, pp. 141-152
  • Kirichok, Y., Navarro, B., Clapham, D.E., Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel (2006) Nature, 439, pp. 737-740
  • Kligman, I., Glassner, M., Storey, B.T., Kopf, G.S., Zona pellucida-mediated acrosomal exocytosis in mouse spermatozoa: Characterization of an intermediate stage prior to the completion of the acrosome reaction (1991) Dev Biol, 145, pp. 344-355
  • Kwitny, S., Klaus, A.V., Hunnicutt, G.R., The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis (2010) Biol Reprod, 82, pp. 669-678
  • Lishko, P.V., Botchkina, I.L., Fedorenko, A., Kirichok, Y., Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel (2010) Cell, 140, pp. 327-337
  • Lishko, P.V., Botchkina, I.L., Kirichok, Y., Progesterone activates the principal Ca2+ channel of human sperm (2011) Nature, 471, pp. 387-391
  • Liu, D.Y., Martic, M., Clarke, G.N., Dunlop, M.E., Baker, H.W., An important role of actin polymerization in the human zona pellucida-induced acrosome reaction (1999) Mol Hum Reprod, 5, pp. 941-949
  • Livera, G., Xie, F., Garcia, M.A., Jaiswal, B., Chen, J., Law, E., Storm, D.R., Conti, M., Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function (2005) Mol Endocrinol, 19, pp. 1277-1290
  • Lobley, A., Pierron, V., Reynolds, L., Allen, L., Michalovich, D., Identification of human and mouse CatSper3 and CatSper4 genes: characterisation of a common interaction domain and evidence for expression in testis (2003) Reprod Biol Endocrinol, 1, p. 53
  • Machado-Oliveira, G., Lefievre, L., Ford, C., Herrero, M.B., Barratt, C., Connolly, T.J., Nash, K., Publicover, S., Mobilisation of Ca2+ stores and flagellar regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female reproductive tract (2008) Development, 135, pp. 3677-3686
  • Marquez, B., Suarez, S.S., Bovine sperm hyperactivation Is promoted by alkaline-stimulated Ca2+ influx (2007) Biol Reprod, 76, pp. 660-665
  • Martínez-López, P., Santi, C.M., Treviño, C.L., Ocampo-Gutiérrez, A.Y., Acevedo, J.J., Alisio, A., Salkoff, L.B., Darszon, A., Mouse sperm K+ currents stimulated by pH and cAMP possibly coded by Slo3 channels (2009) Biochem Biophys Res Commun, 381, pp. 204-209
  • Mayorga, L.S., Tomes, C.N., Belmonte, S.A., Acrosomal exocytosis, a special type of regulated secretion (2007) IUBMB Life, 59, pp. 286-292
  • McCarrey, J.R., Thomas, K., Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene (1987) Nature, 326, pp. 501-505
  • Meizel, S., Turner, K.O., Nuccitelli, R., Progesterone triggers a wave of increased free calcium during the human sperm acrosome reaction (1997) Dev Biol, 182, pp. 67-75
  • Merlet, F., Weinstein, L.S., Goldsmith, P.K., Rarick, T., Hall, J.L., Bisson, J.P., de Mazancourt, P., Identification and localization of G protein subunits in human spermatozoa (1999) Mol Hum Reprod, 5, pp. 38-45
  • Miki, K., Qu, W., Goulding, E.H., Willis, W.D., Bunch, D.O., Strader, L.F., Perreault, S.D., O'Brien, D.A., Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility (2004) Proc Natl Acad Sci USA, 101, pp. 16501-16506
  • Mori, C., Welch, J.E., Fulcher, K.D., O'Brien, D.A., Eddy, E.M., Unique hexokinase messenger ribonucleic acids lacking the porin-binding domain are developmentally expressed in mouse spermatogenic cells (1993) Biol Reprod, 49, pp. 191-203
  • Muallem, S., Kwiatkowska, K., Xu, X., Yin, H.L., Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells (1995) J Cell Biol, 128, pp. 589-598
  • Myles, D.G., Primakoff, P., Koppel, D.E., A localized surface protein of guinea pig sperm exhibits free diffusion in its domain (1984) J Cell Biol, 98, pp. 1905-1909
  • Nakamura, N., Miranda-Vizuete, A., Miki, K., Mori, C., Eddy, E.M., Cleavage of disulfide bonds in mouse spermatogenic cell-specific type 1 hexokinase isozyme is associated with increased hexokinase activity and initiation of sperm motility (2008) Biol Reprod, 79, pp. 537-545
  • Nakanishi, T., Ikawa, M., Yamada, S., Parvinen, M., Baba, T., Nishimune, Y., Okabe, M., Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein (1999) FEBS Lett, 449, pp. 277-283
  • Navarro, B., Kirichok, Y., Clapham, D.E., KSper, a pH-sensitive K+ current that controls sperm membrane potential (2007) Proc Natl Acad Sci USA, 104, pp. 7688-7692
  • Nemoto, T., Kojima, T., Oshima, A., Bito, H., Kasai, H., Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini (2004) J Biol Chem, 279, pp. 37544-37550
  • Nolan, M.A., Babcock, D.F., Wennemuth, G., Brown, W., Burton, K.A., McKnight, G.S., Sperm-specific protein kinase A catalytic subunit Calpha2 orchestrates cAMP signaling for male fertility (2004) Proc Natl Acad Sci USA, 101, pp. 13483-13488
  • Oren-Benaroya, R., Orvieto, R., Gakamsky, A., Pinchasov, M., Eisenbach, M., The sperm chemoattractant secreted from human cumulus cells is progesterone (2008) Hum Reprod, 23, pp. 2339-2345
  • Pastor-Soler, N., Beaulieu, V., Litvin, T.N., Da Silva, N., Chen, Y., Brown, D., Buck, J., Breton, S., Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling (2003) J Biol Chem, 278, pp. 49523-49529
  • Pinto, F.M., Ravina, C.G., Fernández-Sánchez, M., Gallardo-Castro, M., Cejudo-Román, A., Candenas, L., Molecular and functional characterization of voltage-gated sodium channels in human sperm (2009) Reprod Biol Endocrinol, 7, p. 71
  • Qi, H., Moran, M.M., Navarro, B., Chong, J.A., Krapivinsky, G., Krapivinsky, L., Kirichok, Y., Clapham, D.E., All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility (2007) Proc Natl Acad Sci USA, 104, pp. 1219-1223
  • Quill, T.A., Ren, D., Clapham, D.E., Garbers, D.L., A voltage-gated ion channel expressed specifically in spermatozoa (2001) Proc Natl Acad Sci USA, 98, pp. 12527-12531
  • Ren, D., Navarro, B., Perez, G., Jackson, A.C., Hsu, S., Shi, Q., Tilly, J.L., Clapham, D.E., A sperm ion channel required for sperm motility and male fertility (2001) Nature, 413, pp. 603-609
  • Rogers, B.J., Bastias, C., Coulson, R.L., Russell, L.D., Cytochalasin D inhibits penetration of hamster eggs by guinea pig and human spermatozoa (1989) J Androl, 10, pp. 275-282
  • Da Ros, V.G., Maldera, J.A., Willis, W.D., Cohen, D.J., Goulding, E.H., Gelman, D.M., Rubinstein, M., Cuasnicu, P.S., Impaired sperm fertilizing ability in mice lacking Cysteine-RIch Secretory Protein 1 (CRISP1) (2008) Dev Biol, 320, pp. 12-18
  • Sakai, I., Sharief, F.S., Li, S.S., Molecular cloning and nucleotide sequence of the cDNA for sperm-specific lactate dehydrogenase-C from mouse (1987) Biochem J, 242, pp. 619-622
  • Santi, C.M., Martínez-López, P., de la Vega-Beltrán, J.L., Butler, A., Alisio, A., Darszon, A., Salkoff, L., The SLO3 sperm-specific potassium channel plays a vital role in male fertility (2010) FEBS Lett, 584, pp. 1041-1046
  • Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M., Salkoff, L., Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes (1998) J Biol Chem, 273, pp. 3509-3516
  • Seligman, J., Zipser, Y., Kosower, N.S., Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa (2004) Biol Reprod, 71, pp. 1009-1015
  • Shum, W.W.C., Da Silva, N., Brown, D., Breton, S., Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk (2009) J Exp Biol, 212, pp. 1753-1761
  • Somanath, P.R., Jack, S.L., Vijayaraghavan, S., Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation (2004) J Androl, 25, pp. 605-617
  • Spungin, B., Breitbart, H., Calcium mobilization and influx during sperm exocytosis (1996) J Cell Sci, 109, pp. 1947-1955
  • Spungin, B., Margalit, I., Breitbart, H., Sperm exocytosis reconstructed in a cell-free system: evidence for the involvement of phospholipase C and actin filaments in membrane fusion (1995) J Cell Sci, 108, pp. 2525-2535
  • Stock, C.E., Fraser, L.R., The acrosome reaction in human sperm from men of proven fertility (1987) Hum Reprod, 2, pp. 109-119
  • Storey, B.T., Kayne, F.J., Energy metabolism of spermatozoa. V. The Embden-Myerhof pathway of glycolysis: activities of pathway enzymes in hypotonically treated rabbit epididymal spermatozoa (1975) Fertil Steril, 26, pp. 1257-1265
  • Storey, B.T., Mammalian sperm metabolism: oxygen and sugar, friend and foe (2008) Int J Dev Biol, 52, pp. 427-437
  • Strunker, T., Goodwin, N., Brenker, C., Kashikar, N.D., Weyand, I., Seifert, R., Kaupp, U.B., The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm (2011) Nature, 471, pp. 382-386
  • Suarez, S.S., Vincenti, L., Ceglia, M.W., Hyperactivated motility induced in mouse sperm by calcium ionophore A23187 is reversible (1987) J Exp Zool, 244, pp. 331-336
  • Suarez, S.S., Control of hyperactivation in sperm (2008) Hum Reprod Update, 14, pp. 647-657
  • Sullivan, R., Frenette, G., Girouard, J., Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit (2007) Asian J Androl, 9, pp. 483-491
  • Syntin, P., Dacheux, F., Druart, X., Gatti, J.L., Okamura, N., Dacheux, J.L., Characterization and identification of proteins secreted in the various regions of the adult boar epididymis (1996) Biol Reprod, 55, pp. 956-974
  • Tsai, P.-S., Garcia-Gil, N., van Haeften, T., Gadella, B.M., How pig sperm prepares to fertilize: stable acrosome docking to the plasma membrane (2010) PLoS ONE, 5, pp. e11204
  • Vijayaraghavan, S., Liberty, G.A., Mohan, J., Winfrey, V.P., Olson, G.E., Carr, D.W., Isolation and molecular characterization of AKAP110, a novel, sperm-specific protein kinase A-anchoring protein (1999) Mol Endocrinol, 13, pp. 705-717
  • Vijayaraghavan, S., Stephens, D.T., Trautman, K., Smith, G.D., Khatra, B., da Cruz e, Silva, E.F., Greengard, P., Sperm motility development in the epididymis is associated with decreased glycogen synthase kinase-3 and protein phosphatase 1 activity (1996) Biol Reprod, 54, pp. 709-718
  • Visconti, P.E., Krapf, D., de la Vega-Beltran, J.L., Acevedo, J.J., Darszon, A., Ion channels, phosphorylation and mammalian sperm capacitation (2011) Asian J Androl, 13, pp. 395-405
  • Wang, D., Hu, J., Bobulescu, I.A., Quill, T.A., McLeroy, P., Moe, O.W., Garbers, D.L., A sperm-specific Na+/H+ exchanger (sNHE) is critical for expression and in vivo bicarbonate regulation of the soluble adenylyl cyclase (sAC) (2007) Proc Natl Acad Sci USA, 104, pp. 9325-9330
  • Wang, D., King, S.M., Quill, T.A., Doolittle, L.K., Garbers, D.L., A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility (2003) Nat Cell Biol, 5, pp. 1117-1122
  • Welch, J.E., Schatte, E.C., O'Brien, D.A., Eddy, E.M., Expression of a glyceraldehyde 3-phosphate dehydrogenase gene specific to mouse spermatogenic cells (1992) Biol Reprod, 46, pp. 869-878
  • Wertheimer, E.V., Salicioni, A.M., Liu, W., Trevino, C.L., Chavez, J., Hernández-González, E.O., Darszon, A., Visconti, P.E., Chloride is essential for capacitation and for the capacitation-associated increase in tyrosine phosphorylation (2008) J Biol Chem, 283, pp. 35539-35550
  • Wissenbach, U., Schroth, G., Philipp, S., Flockerzi, V., Structure and mRNA expression of a bovine trp homologue related to mammalian trp2 transcripts (1998) FEBS Lett, 429, pp. 61-66
  • Wood, C.D., Darszon, A., Whitaker, M., Speract induces calcium oscillations in the sperm tail (2003) J Cell Biol, 161, pp. 89-101
  • Xia, J., Reigada, D., Mitchell, C.H., Ren, D., CATSPER channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation (2007) Biol Reprod, 77, pp. 551-559
  • Xia, J., Ren, D., Egg coat proteins activate calcium entry into mouse sperm via CATSPER channels (2009) Biol Reprod, 80, pp. 1092-1098
  • Xie, F., Garcia, M.A., Carlson, A.E., Schuh, S.M., Babcock, D.F., Jaiswal, B.S., Gossen, J.A., Conti, M., Soluble adenylyl cyclase (sAC) is indispensable for sperm function and fertilization (2006) Dev Biol, 296, pp. 353-362
  • Xu, W.M., Shi, Q.X., Chen, W.Y., Zhou, C.X., Ni, Y., Rowlands, D.K., Yi Liu, G., Chan, H.C., Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility (2007) Proc Natl Acad Sci USA, 104, pp. 9816-9821
  • Yudin, A.I., Gottlieb, W., Meizel, S., Ultrastructural studies of the early events of the human sperm acrosome reaction as initiated by human follicular fluid (1988) Gamete Res, 20, pp. 11-24
  • Zanetti, N., Mayorga, L.S., Acrosomal swelling and membrane docking are required for hybrid vesicle formation during the human sperm acrosome reaction (2009) Biol Reprod, 81, pp. 396-405
  • Zeng, X.-H., Yang, C., Kim, S.T., Lingle, C.J., Xia, X.-M., Deletion of the Slo3 gene abolishes alkalization-activated K+ current in mouse spermatozoa (2011) Proc Natl Acad Sci, 108, pp. 5879-5884
  • Zhang, X., Zeng, X., Xia, X.-M., Lingle, C.J., pH-regulated Slo3 K+ Channels: Properties of Unitary Currents (2006) J Gen Physiol, 128, pp. 301-315
  • Zippin, J.H., Levin, L.R., Buck, J., CO(2)/HCO(3)(-)-responsive soluble adenylyl cyclase as a putative metabolic sensor (2001) Trends Endocrinol Metab, 12, pp. 366-370


---------- APA ----------
Buffone, M.G., Ijiri, T.W., Cao, W., Merdiushev, T., Aghajanian, H.K. & Gerton, G.L. (2012) . Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Molecular Reproduction and Development, 79(1), 4-18.
---------- CHICAGO ----------
Buffone, M.G., Ijiri, T.W., Cao, W., Merdiushev, T., Aghajanian, H.K., Gerton, G.L. "Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility" . Molecular Reproduction and Development 79, no. 1 (2012) : 4-18.
---------- MLA ----------
Buffone, M.G., Ijiri, T.W., Cao, W., Merdiushev, T., Aghajanian, H.K., Gerton, G.L. "Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility" . Molecular Reproduction and Development, vol. 79, no. 1, 2012, pp. 4-18.
---------- VANCOUVER ----------
Buffone, M.G., Ijiri, T.W., Cao, W., Merdiushev, T., Aghajanian, H.K., Gerton, G.L. Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility. Mol. Reprod. Dev. 2012;79(1):4-18.