Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Modification of cellulosic paper with carbon nanotubes (CNT) was studied for the development of electronic and analytical devices. Interesting results were published by using a CNT aqueous solution and the capillary forces of filter paper to make conductive tracks, supercapacitors, potentiometric electrodes and chemometric sensors. In this report, we show for the first time an electrochemical characterization of CNT-CS-SDS paper electrodes constructed with an ink containing optimized proportions of multi-wall CNT, chitosan (CS) and sodium dodecyl sulfate (SDS), and we compared our data with CNT-SDS paper electrodes constructed with a previously reported ink. We achieved better reversibility (ΔE=131±14 mV, CVs) and reproducibility (RSD=3.63 %) with CNT-CS-SDS paper electrodes, when compared to CNT-SDS paper electrodes (ΔE=249±7 mV; RSD=6.8 %) used as controls. When electrodes were fold at 90° angle, CNT-CS-SDS paper electrodes showed lower RSD than CNT-SDS paper electrodes, 8.43 % and 21.5 % respectively. These results are in concordance with SEM analysis indicating a dense CS film in CNT-CS-SDS paper electrodes. As a proof of concept, we determine dopamine concentration by DPV in the presence of ascorbic and uric acids, the limit of detection calculated was 6.32 μM. Moreover, a bismuth-film was prepared by in situ plating of Bi into CNT-CS-SDS paper electrodes. ASV allowed us to detect Pb in the presence of Bi (10–200 ppb) with a limit of detection of 6.74 ppb. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Registro:

Documento: Artículo
Título:Low Cost Layer by Layer Construction of CNT/Chitosan Flexible Paper-based Electrodes: A Versatile Electrochemical Platform for Point of Care and Point of Need Testing
Autor:Figueredo, F.; Jesús González-Pabón, M.; Cortón, E.
Filiación:Laboratory of Biosensors and Bioanalysis (LABB), Departamento de Química Biológica e IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires 1428, Argentina
Palabras clave:Bismuth; Carbon Nanotubes; Disposable; Electrochemistry; Paper Electronics
Año:2018
Volumen:30
Número:3
Página de inicio:497
Página de fin:508
DOI: http://dx.doi.org/10.1002/elan.201700782
Título revista:Electroanalysis
Título revista abreviado:Electroanalysis
ISSN:10400397
CODEN:ELANE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10400397_v30_n3_p497_Figueredo

Referencias:

  • Consden, R., Gordon, A.H., Martin, A.J.P., (1944) Biochem. J., 38, p. 224
  • Tiselius, A., Flodin, P., (1953) Adv. Protein Chem., 8, p. 461
  • Vesterberg, O., (1989) J. Chromatogr., A 480, p. 3
  • Vaitukaitis, J.L., Braunstein, G.D., Ross, G.T., (1972) Am. J. Obstet. Gynecol., 113, p. 751
  • O'Farrell, B., Wong, R.C., Tse, H.Y., (2009), pp. 1-33; Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M., (2007) Angew. Chem. Int. Ed., 46, p. 1318
  • Desmet, C., Marquette, C.A., Blum, L.J., Doumèche, B., (2016) Biosens. Bioelectron., 76, p. 145
  • Mahadeva, S.K., Walus, K., Stoeber, B., (2015) ACS Appl. Mater. Interfaces, 7, p. 8345
  • Bracher, P.J., Gupta, M., Whitesides, G.N., (2010) J. Mater. Chem., 20, p. 5117
  • Xia, Y., Si, J., Li, Z., (2016) Biosens. Bioelectron., 77, p. 774
  • Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., Braet, F., (2010) Angew. Chem. Int. Ed., 49, p. 2114
  • Apilux, A., Dungchai, W., Siangproh, W., Praphairaksit, N., Henry, C.S., Chailapakul, O., (2010) Anal. Chem., 82, p. 1727
  • Jagadeesan, K.K., Kumar, S., Sumana, G., (2012) Electrochem. Commun., 20, p. 71
  • Lei, K.F., Lee, K.-F., Yang, S.-I., (2012) Microelectron. Eng., 100, p. 1
  • Liu, H., Xiang, Y., Lu, Y., Crooks, R.M., (2012) Angew. Chem. Int. Ed., 51, p. 6925
  • Nie, Z., Nijhuis, C.A., Gong, J., Chen, X., Kumachev, A., Martinez, A.W., Narovlyansky, M., Whitesides, G.M., (2010) Lab Chip, 10, p. 477
  • Hasan, K.U., Nur, O., Willander, M., (2012) Appl. Phys. Lett., 100, p. 211104
  • Andersson, H., Manuilskiy, A., Unander, T., Lidenmark, C., Forsberg, S., Nilsson, H.-E., (2012) IEEE Sens. J., 12, p. 1901
  • Hu, L., Wu, H., Cui, Y., (2010) Appl. Phys. Lett., 96, p. 183502. , b
  • Tortorich, R., Choi, J.-W., (2013) Nanomaterials, 3, p. 453
  • Tseng, S.-C., Yu, C.-C., Wan, D., Chen, H.-L., Wang, L.A., Wu, M.-C., Su, W.-F., Chen, L.-C., (2012) Anal. Chem., 84, p. 5140
  • Gimenez, A.J., Yáñez-Limón, J.M., Seminario, J.M., (2011) J. Phys. Chem. C, 115, p. 282
  • Liao, X., Liao, Q., Yan, X., Liang, Q., Si, H., Li, M., Wu, H., Zhang, Y., (2015) Adv. Funct. Mater., 25, p. 2395
  • Russo, A., Ahn, B.Y., Adams, J.J., Duoss, E.B., Bernhard, J.T., Lewis, J.A., (2011) Adv. Mater., 23, p. 3426
  • Windmiller, J.R., Bandodkar, A.J., Parkhomovsky, S., Wang, J., (2012) Analyst, 137, p. 1570
  • Lyth, S.M., Silva, S.R.P., (2007) Appl. Phys. Lett., 90, p. 173124
  • Hu, L., Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., Cui, Y., (2009) Proc. Natl. Acad. Sci. USA, 106, p. 21490
  • Arun, R.K., Halder, S., Chanda, N., Chakraborty, S., (2014) Lab Chip, 14, p. 1661
  • Fraiwan, A., Mukherjee, S., Sundermier, S., Lee, H.-S., Choi, S., (2013) Biosens. Bioelectron., 49, p. 410
  • Ciniciato, G.P.M.K., Lau, C., Cochrane, A., Sibbett, S.S., Gonzalez, E.R., Atanassov, P., (2012) Electrochim. Acta, 82, p. 208
  • Dragoman, M., Flahaut, E., Dragoman, D., Al Ahmad, M., Plana, R., (2009) Nanotechnology, 20, p. 375203
  • Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., (2006) Chem. Rev., 106, p. 1105
  • Rausch, J., Zhuang, R.-C., Mäder, E., (2010) Compos. Part A Appl. Sci. Manuf., 41, p. 1038
  • Tang, C., Zhou, T., Yang, J., Zhang, Q., Chen, F., Fu, Q., Yang, L., (2011) Colloids Surf. B, 86, p. 189
  • Vaisman, L., Wagner, H.D., Marom, G., (2006) Adv. Colloid Interface Sci., 128-130, p. 37
  • Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., Yodh, A.G., (2003) Nano Lett., 3, p. 269
  • Rastogi, R., Kaushal, R., Tripathi, S.K., Sharma, A.L., Kaur, I., Bharadwaj, L.M., (2008) J. Colloid Interface Sci., 328, p. 421
  • Yu, J., Grossiord, N., Koning, C.E., Loos, J., (2007) Carbon, 45, p. 618
  • Kamyshny, A., Mogdassi, S., (2014) Small, 10, p. 3515
  • Liu, Y., Tang, J., Chen, X., Xin, J.H., (2005) Carbon, 43, p. 3178
  • Spinks, G.M., Shin, S.R., Wallace, G.G., Whitten, P.G., Kim, S.I., Kim, S.J., (2006) Sens. Actuators B, 115, p. 678
  • Figueredo, F., Garcia, P.T., Cortón, E., Coltro, W.K.T., (2016) ACS Appl. Mater. Interfaces, 8, p. 11
  • Novell, M., Parrilla, M., Crespo, G.A., Rius, F.X., Andrade, F.J., (2012) Anal. Chem., 84, p. 4695
  • Zhang, Y.-Z., Wang, Y., Cheng, T., Lai, W.-Y., Pang, H., Huang, W., (2015) Chem. Soc. Rev., 44, p. 5181
  • Wang, L., Chen, W., Xu, D., Shim, B.S., Zhu, Y., Sun, F., Liu, L., Kotov, N.A., (2009) Nano Lett., 9, p. 4147
  • Pozuelo, M., Blondeau, P., Novell, M., Andrade, F.J., Rius, F.X., Riu, J., (2013) Biosens. Bioelectron., 49, p. 462
  • da Costa, T.H., Song, E., Tortorich, R.P., Choi, J.-W., (2015) ECS J. Solid State Sci. Technol., 4, p. 3044. , S
  • Wightman, R.M., May, L.J., Michael, A.C., (1988) Anal. Chem., p. 60. , 769A
  • Sajid, M., Nazal, M.K., Mansha, M., Alsharaa, A., Jillani, S.M.S., Basheer, C., (2016) TrAC Trends Anal. Chem., 76, p. 15
  • Han, D., Han, T., Shan, C., Ivaska, A., Niu, L., (2010) Electroanalysis, 22, p. 2001
  • Cai, W., Lai, T., Du, H., Ye, J., (2014) Sens. Actuators B, 193, p. 492
  • Janegitz, B.C., Figueiredo-Filho, L.C.S., Marcolino-Junior, L.H., Souza, S.P.N., Pereira-Filho, E.R., Fatibello-Filho, O., (2011) J. Electroanal. Chem., 660, p. 209
  • Wang, T., Yue, W., (2017) Electroanalysis, 29, p. 2178
  • Lee, K.Y., Ambrosi, A., Pumera, M., (2017) Electroanalysis, 29, p. 1
  • Organization, W.H., (2011) Guidelines for Drinking-Water Quality, Fourth Ed., , Geneva
  • Hwang, G.H., Han, W.K., Park, J.S., Kang, S.G., (2008) Talanta, 76, p. 301
  • Kadara, R.O., Jenkinson, N., Banks, C.E., (2009) Electroanalysis, 21, p. 2410
  • Feng, Q.-M., Zhang, Q., Shi, C.-G., Xu, J.-J., Bao, N., Gu, H.-Y., (2013) Talanta, 115, p. 235
  • Niu, P., Fernández-Sánchez, C., Gich, M., Navarro-Hernández, C., Fanjul-Bolado, P., Roig, A., (2016) Microchim. Acta, 183, p. 617
  • Saeed, A.A., Singh, B., Abbas, M.N., Dempsey, E., (2016) Electroanalysis, 28, p. 2205
  • Silva, L.A.J., Pereira da Silva, W., Giuliani, J.G., Canobre, S.C., Garcia, C.D., Abarza Munoz, R.A., Richter, E.M., (2017) Talanta, 165, p. 33
  • Martín-Yerga, D., Álvarez-Martos, I., Blanco-López, M.C., Henry, C.S., Fernández-Abedul, M.T., (2017) Anal. Chim. Acta, 981, p. 24
  • Rinaudo, M., Pavlov, G., Desbrières, J., (1999) Polymer, 40, p. 7029
  • Wu, L.-Q., Gadre, A.P., Yi, H., Kastantin, M.J., Rubloff, G.W., Bentley, W.E., Payne, G.F., Ghodssi, R., (2002) Langmuir, 18, p. 8620
  • Aryaei, A., Jayatissa, A.H., Jayasuriya, A.C., (2014) J. Biomed. Mater. Res., 102A, p. 2704
  • Qiu, J.-D., Xie, H.-Y., Liang, R.-P., (2008) Microchim. Acta, 162, p. 57
  • Gabriel, E.F.M., Garcia, P.T., Cardoso, T.M.G., Lopes, F.M., Martins, F.T., Coltro, W.K.T., (2016) Analyst, 141, p. 4749
  • Myllytie, P., Salmi, J., Laine, J., (2009) BioResources, 4, p. 1647
  • Guinovart, T., Parrilla, M., Crespo, G.A., Rius, F.X., Andrade, F.J., (2013) Analyst, 138, p. 5208
  • Kim, B., Lu, Y., Kim, T., Han, J.-W., Meyyappan, M., Li, J., (2014) ACS Nano, 8, p. 12092
  • Teng, T.-P., Fang, Y.-B., Hsu, Y.-C., Lin, L., (2014) J. Nanomater., p. 1
  • Chekin, F., Raoof, J.B., Bagheri, S., Hamid, S.B.A., (2012) Anal. Methods, 4, p. 2977
  • Hwang, J.H., Kim, H.S., Kim, J.H., Shin, U.S., Lee, S.H., (2015) Langmuir, 31, p. 7844
  • Da Róz, A.L., Leite, F.L., Pereiro, L.V., Nascente, P.A.P., Oliveira, V.Z., Carvalho, A.J.F., (2010) Carbohydr. Polym., 80, p. 65
  • Kjellgren, H., Gällstedt, M., Engström, G., Järnström, L., (2006) Carbohydr. Polym., 65, p. 453
  • Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods: Fundamentals and Applications, , 2nd Edition
  • Pellitero, M.A., Kitsara, M., Eibensteiner, F., del Campo, F.J., (2016) Analyst, 141, p. 2515
  • Zhao, T., Liu, L., Li, G., Dang, A., Li, T., (2012) J. Electrochem. Soc., 159, p. 141. , k
  • Girija, T.C., Sangaranarayanan, M.V., (2006) J. Power Sources, 156, p. 705
  • Pauliukaite, R., Ghica, M.E., Fatibello-Filho, O., Brett, C.M.A., (2010) Electrochim. Acta, 55, p. 6239
  • Giuliani, J.G., Benavidez, T.E., Duran, G.M., Vinogradova, E., Rios, A., Garcia, C.D., (2016) J. Electroanal. Chem., 765, p. 8
  • Zang, D., Ge, L., Yan, M., Song, X., Yu, J., (2012) Chem. Commun., 48, p. 4683
  • Modali, A., Vanjari, S.R.K., Dendukuri, D., (2016) Electroanalysis, 28, p. 1276
  • Kassal, P., Kim, J., Kumar, R., de Araujo, W.R., Steinberg, I.M., Steinberg, M.D., Wang, J., (2015) Electrochem. Commun., 56, p. 6
  • Hu, L., Pasta, M., La Mantia, F., Cui, L., Jeong, S., Deshazer, H.D., Choi, J.W., Cui, Y., (2010) Nano Lett., 10, p. 708. , a
  • Baldrianová, L., Švancara, I., Vlček, M., Economou, A., Sotiropoulos, S., (2006) Electrochim. Acta, 52, p. 481
  • Xu, H., Zeng, L., Xing, S., Shi, G., Chen, J., Xian, J., Jin, L., (2008) Electroanalysis, 20, p. 2655
  • Wang, J., (2005) Electroanalysis, 17, p. 1341
  • Luo, J.H., Jiao, X.X., Li, N.B., Luo, H.Q., (2013) J. Electroanalysis, 689, p. 130. , Chem
  • Li, J., Guo, S., Zhai, Y., Wang, E., (2009) Anal. Chim. Acta, 649, p. 196
  • Wang, J., Pedrero, M., Sakslund, H., Hammerich, O., Pingarron, J., (1996) Analyst, 121, p. 345
  • Cumba, L.R., Foster, C.W., Brownson, D.A.C., Smith, J.P., Iniesta, J., Thakur, B., do Carmo, D.R., Banks, C.E., (2016) Analyst, 141, p. 2791
  • Blanco, E., Foster, C.W., Cumba, L.R., do Carmo, D.R., Banks, C.E., (2016) Analyst, 141, p. 2783
  • Pincemail, J., Vanbelle, S., Degrune, F., Cheramy-Bien, J.-P., Charlier, C., Chapelle, J.-P., Giet, D., Defraigne, J.-O., (2011) J. Nutr. Metab., 2011, p. 1
  • Aneesh, K., Bechmans, S., (2017) J. Solid State Electrochem., 21, p. 1263
  • Rattanarat, P., Dungchai, W., Siangproh, W., Chailapakul, O., Henry, C.S., (2012) Anal. Chim. Acta, 744, p. 1
  • Ulubay, S., Dursun, Z., (2010) Talanta, 80, p. 1461

Citas:

---------- APA ----------
Figueredo, F., Jesús González-Pabón, M. & Cortón, E. (2018) . Low Cost Layer by Layer Construction of CNT/Chitosan Flexible Paper-based Electrodes: A Versatile Electrochemical Platform for Point of Care and Point of Need Testing. Electroanalysis, 30(3), 497-508.
http://dx.doi.org/10.1002/elan.201700782
---------- CHICAGO ----------
Figueredo, F., Jesús González-Pabón, M., Cortón, E. "Low Cost Layer by Layer Construction of CNT/Chitosan Flexible Paper-based Electrodes: A Versatile Electrochemical Platform for Point of Care and Point of Need Testing" . Electroanalysis 30, no. 3 (2018) : 497-508.
http://dx.doi.org/10.1002/elan.201700782
---------- MLA ----------
Figueredo, F., Jesús González-Pabón, M., Cortón, E. "Low Cost Layer by Layer Construction of CNT/Chitosan Flexible Paper-based Electrodes: A Versatile Electrochemical Platform for Point of Care and Point of Need Testing" . Electroanalysis, vol. 30, no. 3, 2018, pp. 497-508.
http://dx.doi.org/10.1002/elan.201700782
---------- VANCOUVER ----------
Figueredo, F., Jesús González-Pabón, M., Cortón, E. Low Cost Layer by Layer Construction of CNT/Chitosan Flexible Paper-based Electrodes: A Versatile Electrochemical Platform for Point of Care and Point of Need Testing. Electroanalysis. 2018;30(3):497-508.
http://dx.doi.org/10.1002/elan.201700782