Artículo

Muñiz, J.A.; Gomez, G.; González, B.; Rivero-Echeto, M.C.; Cadet, J.L.; García-Rill, E.; Urbano, F.J.; Bisagno, V. "Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum" (2016) Neurotoxicity Research. 29(4):525-538
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Caffeine is the world’s most popular psychoactive drug and is also an active adulterant found in many drugs of abuse, including seized cocaine samples. Despite several studies which examine the effects of caffeine or cocaine administered as single agents, little data are available for these agents when given in combination. The purpose of the present study was to determine if combined intake of both psychostimulants can lead to maladaptive changes in striatal function. Mice were injected with a binge regimen (intermittent treatment for 13 days) of caffeine (3 × 5 mg/kg), cocaine (3 × 10 mg/kg), or combined administration. We found that chronic caffeine potentiated locomotion induced by cocaine and that both caffeine-treated groups showed sensitization. Striatal tissue was obtained 24 h and 7 days after last injection (withdrawal) for immunohistochemistry and mRNA expression. Our results show that combined intake of both psychostimulants can increase GFAP immunoreactivity in the striatum at both times post treatment. Gene expression analysis, targeted at dopamine, adenosine, and glutamate receptor subunit genes, revealed significant transcript down-regulation in the dorsal striatum of AMPA, NMDA, D1 and D2 receptor subunit mRNA expression in the group that received combined treatment, but not after individual administration. At withdrawal, we found increased D1 receptor mRNA expression along with increased A1, AMPA, NMDA, and metabotropic subunit expression. A2A mRNA showed decreased expression after both times in all experimental groups. Our study provides evidence that there are striatal alterations mediated by combined caffeine and cocaine administration, and highlights negative outcomes of chronic intake of both psychostimulants. © 2016, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum
Autor:Muñiz, J.A.; Gomez, G.; González, B.; Rivero-Echeto, M.C.; Cadet, J.L.; García-Rill, E.; Urbano, F.J.; Bisagno, V.
Filiación:Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias, Departamento de Fisiología, Biología Molecular y Celular “Dr. Hector Maldonado” (DFBMC), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, piso 5, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1113, Argentina
Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
Department of Neurobiology and Developmental Sciences, Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
Palabras clave:Astroglia; Caffeine; Cocaine; Dopamine; Locomotor sensitization; Striatum; adenosine A2a receptor; alpha amino 3 hydroxy 5 methyl 4 isoxazolepropionic acid; caffeine; cocaine; dopamine 1 receptor; dopamine 2 receptor; glial fibrillary acidic protein; glutamate receptor; messenger RNA; n methyl dextro aspartic acid; caffeine; central stimulant agent; cocaine; dopamine uptake inhibitor; drug combination; glial fibrillary acidic protein; membrane protein; messenger RNA; nerve protein; animal experiment; animal tissue; Article; astrocytosis; brain function; controlled study; corpus striatum; down regulation; gene expression; genetic analysis; immunohistochemistry; immunoreactivity; locomotion; maladjustment; male; mouse; nerve cell plasticity; nonhuman; priority journal; sensitization; upregulation; analysis of variance; animal; C57BL mouse; corpus striatum; drug combination; drug effects; gene expression regulation; genetics; metabolism; time factor; Analysis of Variance; Animals; Caffeine; Central Nervous System Stimulants; Cocaine; Corpus Striatum; Dopamine Uptake Inhibitors; Drug Combinations; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Locomotion; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Nerve Tissue Proteins; RNA, Messenger; Time Factors
Año:2016
Volumen:29
Número:4
Página de inicio:525
Página de fin:538
DOI: http://dx.doi.org/10.1007/s12640-016-9601-0
Título revista:Neurotoxicity Research
Título revista abreviado:Neurotoxic. Res.
ISSN:10298428
CODEN:NURRF
CAS:alpha amino 3 hydroxy 5 methyl 4 isoxazolepropionic acid, 77521-29-0; caffeine, 58-08-2; cocaine, 50-36-2, 53-21-4, 5937-29-1; n methyl dextro aspartic acid, 6384-92-5; Caffeine; Central Nervous System Stimulants; Cocaine; Dopamine Uptake Inhibitors; Drug Combinations; Glial Fibrillary Acidic Protein; Membrane Proteins; Nerve Tissue Proteins; RNA, Messenger
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298428_v29_n4_p525_Muniz

Referencias:

  • Araque, A., Carmignoto, G., Haydon, P.G., Oliet, S.H., Robitaille, R., Volterra, A., Gliotransmitters travel in time and space (2014) Neuron, 81, pp. 728-739. , COI: 1:CAS:528:DC%2BC2cXivFCnsrc%3D, PID: 24559669
  • Bignami, A., Eng, L.F., Dahl, D., Uyeda, C.T., Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence (1972) Brain Res, 43, pp. 429-435. , COI: 1:STN:280:DyaE383mtVOlsg%3D%3D, PID: 4559710
  • Bisagno, V., Raineri, M., Peskin, V., Wikinski, S.I., Uchitel, O.D., Llinás, R.R., Urbano, F.J., Effects of T-type calcium channel blockers on cocaine-induced hyperlocomotion and thalamocortical GABAergic abnormalities in mice (2010) Psychopharmacology, 212, pp. 205-214. , COI: 1:CAS:528:DC%2BC3cXptFWqtbY%3D, PID: 20652540
  • Blanco-Calvo, E., Rivera, P., Arrabal, S., Vargas, A., Pavón, F.J., Serrano, A., Castilla-Ortega, E., Rodriguez de Fonseca, F., Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat (2014) Front Integr Neurosci, 8 (7), p. 106
  • Bowers, M.S., Kalivas, P.W., Forebrain astroglial plasticity is induced following withdrawal from repeated cocaine administration (2003) Eur J Neurosci, 17, pp. 1273-1278. , PID: 12670315
  • Brown, A.L., Flynn, J.R., Smith, D.W., Dayas, C.V., Down-regulated striatal gene expression for synaptic plasticity-associated proteins in addiction and relapse vulnerable animals (2011) Int J Neuropsychopharmacol, 14, pp. 1099-1110. , COI: 1:CAS:528:DC%2BC3MXps1eitLs%3D, PID: 21205431
  • Cadet, J.L., Bisagno, V., Glial-neuronal ensembles: partners in drug addiction-associated synaptic plasticity (2014) Front Pharmacol, 2 (5), p. 204
  • Cadet, J.L., Bisagno, V., Neuropsychological consequences of chronic drug use: relevance to treatment approaches (2016) Front Psychiatry, , PID: 26834649
  • Cadet, J.L., Bisagno, V., Milroy, C.M., Neuropathology of substance use disorders (2014) Acta Neuropathol, 127, pp. 91-107. , COI: 1:CAS:528:DC%2BC3sXhvVOnsLnJ, PID: 24292887
  • Cauli, O., Pinna, A., Valentini, V., Morelli, M., Subchronic caffeine exposure induces sensitization to caffeine and cross-sensitization to amphetamine ipsilateral turning behavior independent from dopamine release (2003) Neuropsychopharmacology, 28, pp. 1752-1759. , COI: 1:CAS:528:DC%2BD3sXnsVyisb4%3D, PID: 12865902
  • Centonze, D., Grande, C., Usiello, A., Gubellini, P., Erbs, E., Martin, A.B., Pisani, A., Calabresi, P., Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons (2003) J Neurosci, 23, pp. 6245-6254. , COI: 1:CAS:528:DC%2BD3sXlvVCgs7w%3D, PID: 12867509
  • Cole, C., Jones, L., McVeigh, J., Kicman, A., Syed, Q., Bellis, M., Adulterants in illicit drugs: a review of empirical evidence (2011) Drug Test Anal, 3, pp. 89-96. , COI: 1:CAS:528:DC%2BC3MXhvFSjtrY%3D, PID: 21322119
  • Collins, G.T., France, C.P., Determinants of conditioned reinforcing effectiveness: dopamine D2-like receptor agonist-stimulated responding for cocaine-associated stimuli (2015) Eur J Pharmacol, 769, pp. 242-249. , COI: 1:CAS:528:DC%2BC2MXhvVyku7bL, PID: 26593427
  • Derlet, R.W., Tseng, J.C., Albertson, T.E., Potentiation of cocaine and d-amphetamine toxicity with caffeine (1992) Am J Emerg Med, 10, pp. 211-216. , COI: 1:STN:280:DyaK383msFWjsA%3D%3D, PID: 1586430
  • Dews, P.B., O’Brien, C.P., Bergman, J., Caffeine: behavioral effects of withdrawal and related issues (2002) Food ChemToxicol, 40, pp. 1257-1261. , COI: 1:CAS:528:DC%2BD38XmsVers7o%3D
  • Dietrich, J.B., Mangeol, A., Revel, M.O., Burgun, C., Aunis, D., Zwiller, J., Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures (2005) Neuropharmacology, 48, pp. 965-974. , COI: 1:CAS:528:DC%2BD2MXjs1Omtbw%3D, PID: 15857623
  • Dunwiddie, T.V., Masino, S.A., The role and regulation of adenosine in the central nervous system (2001) Annu Rev Neurosci, 24, pp. 31-55. , COI: 1:CAS:528:DC%2BD3MXls1Siu7c%3D, PID: 11283304
  • Eisener-Dorman, A.F., Grabowski-Boase, L., Tarantino, L.M., Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice (2011) Behav Brain Funct, 1 (7), p. 29
  • El Yacoubi, M., Ledent, C., Ménard, J.F., Parmentier, M., Costentin, J., Vaugeois, J.M., The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A(2A) receptors (2000) Br J Pharmacol, 129, pp. 1465-1473. , PID: 10742303
  • Eng, L.F., Ghirnikar, R.S., Lee, Y.L., Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) (2000) Neurochem Res, 25, pp. 1439-1451. , COI: 1:CAS:528:DC%2BD3cXns1eiuro%3D, PID: 11059815
  • Ferré, S., Caffeine and substance use disorders (2013) J Caffeine Res, 3, pp. 57-58. , PID: 24761274
  • Ferré, S., Lluís, C., Justinova, Z., Quiroz, C., Orru, M., Navarro, G., Canela, E.I., Goldberg, S.R., Adenosine-cannabinoid receptor interactions. Implications for striatal function (2010) Br J Pharmacol, 160, pp. 443-453. , PID: 20590556
  • Filip, M., Frankowska, M., Zaniewska, M., Przegaliński, E., Muller, C.E., Agnati, L., Franco, R., Fuxe, K., Involvement of adenosine A2A and dopamine receptors in the locomotor and sensitizing effects of cocaine (2006) Brain Res, 1077, pp. 67-80. , COI: 1:CAS:528:DC%2BD28XisF2murs%3D, PID: 16516871
  • Fisone, G., Håkansson, K., Borgkvist, A., Santini, E., Signaling in the basal ganglia: postsynaptic and presynaptic mechanisms (2007) Physiol Behav, 92, pp. 8-14. , COI: 1:CAS:528:DC%2BD2sXhtVCgsr%2FL, PID: 17585965
  • Frau, L., Costa, G., Porceddu, P.F., Khairnar, A., Castelli, M.P., Ennas, M.G., Madeddu, C., Morelli, M., Influence of caffeine on3,4-methylenedioxymethamphetamine-induced dopaminergic neuron degeneration and neuroinflammation is age-dependent (2015) J Neurochem, , PID: 26442661
  • Fredholm, B.B., Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine (1995) Pharmacol Toxicol, 76, pp. 93-101. , COI: 1:CAS:528:DyaK2MXjsl2ns7w%3D, PID: 7746802
  • Fredholm, B.B., Bättig, K., Holmén, J., Nehlig, A., Zvartau, E.E., Actions of caffeine in the brain with special reference to factors that contribute to its widespread use (1999) Pharmacol Rev, 51, pp. 83-133. , COI: 1:CAS:528:DyaK1MXitFWgurk%3D, PID: 10049999
  • Fredholm, B.B., IJzerman, A.P., Jacobson, K.A., Klotz, K.N., Linden, J., International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors (2001) Pharmacol Rev, 53, pp. 527-552. , COI: 1:CAS:528:DC%2BD38XltVOltQ%3D%3D, PID: 11734617
  • Freeman, W.M., Lull, M.E., Patel, K.M., Brucklacher, R.M., Morgan, D., Roberts, D.C., Vrana, K.E., Gene expression changes in the medial prefrontal cortex and nucleus accumbens following abstinence from cocaine self-administration (2010) BMC Neurosci, 11, p. 29. , PID: 20187946
  • Garaschuk, O., Yaari, Y., Konnerth, A., Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones (1997) J Physiol (Lond), 502, pp. 13-30. , COI: 1:CAS:528:DyaK2sXkvVags7k%3D
  • Gasior, M., Jaszyna, M., Peters, J., Goldberg, S.R., Changes in the ambulatory activity and discriminative stimulus effects of psychostimulant drugs in rats chronically exposed to caffeine: effect of caffeine dose (2000) J Pharmacol Exp Ther, 295, pp. 1101-1111. , COI: 1:CAS:528:DC%2BD3cXosVKisL0%3D, PID: 11082446
  • Gonzalez, C.R., Gonzalez, B., Matzkin, M.E., Muñiz, J.A., Cadet, J.L., Garcia-Rill, E., Urbano, F.J., Bisagno, V., Psychostimulant-induced testicular toxicity in mice: evidence of cocaine and caffeine effects on the local dopaminergic system (2015) PLoS One, 10 (11), p. e0142713. , PID: 26560700
  • Haile, C.N., During, M.J., Jatlow, P.I., Kosten, T.R., Kosten, T.A., Disulfiram facilitates the development and expression of locomotor sensitization to cocaine in rats (2003) Biol Psychiatry, 54, pp. 915-921. , COI: 1:CAS:528:DC%2BD3sXot1Omt7w%3D, PID: 14573319
  • Hasin, D.S., O’Brien, C.P., Auriacombe, M., Borges, G., Bucholz, K., Budney, A., Compton, W.M., Grant, B.F., DSM-5 criteria for substance use disorders: recommendations and rationale (2013) Am J Psychiatry, 170, pp. 834-851. , PID: 23903334
  • Hays, L.R., Farabee, D., Miller, W., Caffeine and nicotine use in an addicted population (1998) J Addict Dis, 17, pp. 47-54. , COI: 1:STN:280:DyaK1c3htVOksw%3D%3D, PID: 9549602
  • Hsu, C.W., Chen, C.Y., Wang, C.S., Chiu, T.H., Caffeine and a selective adenosine A2A receptor antagonist induce reward and sensitization behavior associated with increased phospho-Thr75-DARPP-32 in mice (2009) Psychopharmacology (Berl), 204, pp. 313-325. , COI: 1:CAS:528:DC%2BD1MXpvFWkuw%3D%3D
  • Jayanthi, S., Deng, X., Bordelon, M., McCoy, M.T., Cadet, J.L., Methamphetamine causes differential regulation of pro-death and anti-death Bcl-2 genes in the mouse neocortex (2001) FASEB J, 15, pp. 1745-1752. , COI: 1:CAS:528:DC%2BD3MXmsFeht7g%3D, PID: 11481222
  • Jones, H.E., Griffiths, R.R., Oral caffeine maintenance potentiates the reinforcing and stimulant subjective effects of intravenous nicotine in cigarette smokers (2003) Psychopharmacology, 165, pp. 280-290. , COI: 1:CAS:528:DC%2BD3sXltleksA%3D%3D, PID: 12434259
  • Kalivas, P.W., O’Brien, C., Drug addiction as a pathology of staged neuroplasticity (2008) Neuropsychopharmacology, 33 (1), pp. 166-180. , COI: 1:CAS:528:DC%2BD2sXhtlKltbzM, PID: 17805308
  • Khairnar, A., PlumitalloA, F.L., Schintu, N., Morelli, M., Caffeine enhances astroglia and microglia reactivity induced by 3,4-methylenedioxymethamphetamine (‘ecstasy’) in mouse brain (2010) Neurotox Res, 17, pp. 435-439. , COI: 1:CAS:528:DC%2BC3cXlt1SjsLk%3D, PID: 19882200
  • Kuzmin, A., Johansson, B., Zvartau, E.E., Fredholm, B.B., Caffeine, acting on adenosine A(1) receptors, prevents the extinction of cocaine-seeking behavior in mice (1999) J PharmacolExpTher., 290, pp. 535-542. , COI: 1:CAS:528:DyaK1MXkvVKgu7s%3D
  • Kuzmin, A., Johansson, B., Fredholm, B.B., Ögren, S.O., Genetic evidence that cocaine and caffeine stimulate locomotion in mice via different mechanisms (2000) Life sciences, 66 (8), pp. PL113-PL118. , COI: 1:CAS:528:DC%2BD3cXntF2itg%3D%3D, PID: 10680584
  • Kuzmin, A., Johansson, B., Semenova, S., Fredholm, B.B., Differences in the effect of chronic and acute caffeine on self-administration of cocaine in mice (2000) Eur J Neurosci, 12, pp. 3026-3032. , COI: 1:STN:280:DC%2BD3cvptlamsA%3D%3D, PID: 10971643
  • Liguori, A., Hughes, J.R., Goldberg, K., Callas, P., Subjective effects of oral caffeine in formerly cocaine-dependent humans (1997) Drug Alcohol Depend, 49, pp. 17-24. , COI: 1:CAS:528:DyaK2sXotVymtr4%3D, PID: 9476695
  • López-Hill, X., Prieto, J.P., Meikle, M.N., Urbanavicius, J., Abin-Carriquiry, J.A., Prunell, G., Umpiérrez, E., Scorza, M.C., Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant (2011) Behav Brain Res, 221, pp. 134-141. , PID: 21392540
  • Maragakis, N.J., Rothstein, J.D., Mechanisms of Disease: astrocytes in neurodegenerative disease (2006) Nat ClinPractNeurol, 2, pp. 679-689. , COI: 1:CAS:528:DC%2BD28XhtlajurzP
  • Matos, M., Augusto, E., Santos-Rodrigues, A.D., Schwarzschild, M.A., Chen, J.F., Cunha, R.A., Agostinho, P., Adenosine A2A receptors modulate glutamate uptake in cultured astrocytes and gliosomes (2012) Glia, 60, pp. 702-716. , PID: 22298379
  • McNamara, R., Kerans, A., O’Neill, B., Harkin, A., Caffeine promotes hyperthermia and serotonergic loss following co-administration of the substituted amphetamines, MDMA (“Ecstasy”) and MDA (“Love”) (2006) Neuropharmacology, 50, pp. 69-80. , COI: 1:CAS:528:DC%2BD28XksVKktQ%3D%3D, PID: 16188283
  • McPherson, P.S., Kim, Y.K., Valdivia, H., Knudson, C.M., Takekura, H., Franzini-Armstrong, C., Coronado, R., Campbell, K.P., The brain ryanodine receptor: a caffeine-sensitive calcium release channel (1991) Neuron, 7, pp. 17-25. , COI: 1:CAS:528:DyaK3MXlsFGlsb0%3D, PID: 1648939
  • Prieto, J.P., Galvalisi, M., López-Hill, X., Meikle, M.N., Abin-Carriquiry, J.A., Scorza, C., Caffeine enhances and accelerates the expression of sensitization induced by coca paste indicating its relevance as a main adulterant (2015) Am J Addict, 24, pp. 475-481. , PID: 25974755
  • Raineri, M., Gonzalez, B., Goitia, B., Garcia-Rill, E., Krasnova, I.N., Cadet, J.L., Urbano, F.J., Bisagno, V., Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum (2012) PLoS One, 7, p. e46599. , COI: 1:CAS:528:DC%2BC38XhsFalu7bJ, PID: 23056363
  • Reissig, C.J., Strain, E.C., Griffiths, R.R., Caffeinated energy drinks–a growing problem (2009) Drug Alcohol Depend, 99, pp. 1-10. , COI: 1:CAS:528:DC%2BD1cXhsVKltrjF, PID: 18809264
  • Robinson, T.E., Berridge, K.C., The neural basis of drug craving: an incentive-sensitization theory of addiction (1993) Brain Res Brain Res Rev, 18, pp. 247-291. , COI: 1:CAS:528:DyaK3sXlsFWnu78%3D, PID: 8401595
  • Rosi, S., McGann, K., Hauss-Wegrzyniak, B., Wenk, G.L., The influence of brain inflammation upon neuronal adenosine A2B receptors (2003) J Neurochem, 86, pp. 220-227. , COI: 1:CAS:528:DC%2BD3sXltFelu7o%3D, PID: 12807441
  • Rosin, D.L., Hettinger, B.D., Lee, A., Linden, J., Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function (2003) Neurology, 61, pp. S12-S18. , COI: 1:CAS:528:DC%2BD3sXptVCltro%3D, PID: 14663003
  • Schenk, S., Partridge, B., Sensitization and tolerance in psychostimulant self-administration (1997) Pharmacol Biochem Behav, 57, pp. 543-550. , COI: 1:CAS:528:DyaK2sXkt1yhsro%3D, PID: 9218279
  • Schenk, S., Valadez, A., Horger, B.A., Snow, S., Wellman, P.J., Interactions between caffeine and cocaine in tests of self-administration (1994) Behav Pharmacol, 5, pp. 153-158. , COI: 1:CAS:528:DyaK2cXlsVyrtbc%3D, PID: 11224263
  • Sinchai, T., Plasen, S., Sanvarinda, Y., Jaisin, Y., Govitrapong, P., Morales, N.P., Ratanachamnong, P., Plasen, D., Caffeine potentiates methamphetamine-induced toxicity both in vitro and in vivo (2011) Neurosci Lett, 502, pp. 65-69. , COI: 1:CAS:528:DC%2BC3MXhtVGrsb3K, PID: 21803121
  • Sofroniew, M.V., Molecular dissection of reactive astrogliosis and glial scar formation (2009) Trends Neurosci, 32, pp. 638-647. , COI: 1:CAS:528:DC%2BD1MXhsVKgs7bP, PID: 19782411
  • Stonehouse, A.H., Adachi, M., Walcott, E.C., Jones, F.S., Caffeine regulates neuronal expression of the dopamine 2 receptor gene (2003) Mol Pharmacol, 64, pp. 1463-1473. , COI: 1:CAS:528:DC%2BD3sXps1Oiurk%3D, PID: 14645677
  • Tozzi, A., de Iure, A., Marsili, V., Romano, R., Tantucci, M., Di Filippo, M., Costa, C., Calabresi, P., A2A adenosine receptor antagonism enhances synaptic and motor effects of cocaine via CB1 cannabinoid receptor activation (2012) PLoS One, 7 (6), p. e38312. , COI: 1:CAS:528:DC%2BC38XovFSqtrY%3D, PID: 22715379
  • Ujike, H., Akiyama, K., Otsuki, S., D-2 but not D-1 dopamine agonists produce augmented behavioral response in rats after subchronic treatment with methamphetamine or cocaine (1990) Psychopharmacology, 102, pp. 459-464. , COI: 1:CAS:528:DyaK3MXjsF2juw%3D%3D, PID: 2151400
  • Valjent, E., Bertran-Gonzalez, J., Aubier, B., Greengard, P., Hervé, D., Girault, J.A., Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol (2010) Neuropsychopharmacology, 35, pp. 401-415. , COI: 1:CAS:528:DC%2BD1MXhsFGmsrbM, PID: 19759531
  • Vanattou-Saïfoudine, N., McNamara, R., Harkin, A., Caffeine provokes adverse interactions with 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) and related psychostimulants: mechanisms and mediators (2012) Br J Pharmacol, 167, pp. 946-959. , PID: 22671762
  • Vanderschuren, L.J., Kalivas, P.W., Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies (2000) Psychopharmacology (Berl), 151, pp. 99-120. , COI: 1:CAS:528:DC%2BD3cXmtFyksrc%3D
  • Volkow, N.D., Wang, G.J., Fowler, J.S., Tomasi, D., Addiction circuitry in the human brain (2012) Annu Rev PharmacolToxicol, 52, pp. 321-336. , COI: 1:CAS:528:DC%2BC38XjsV2nt7g%3D
  • Volkow, N.D., Wang, G.J., Logan, J., Alexoff, D., Fowler, J.S., Thanos, P.K., Wong, C., Tomasi, D., Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain (2015) Transl Psychiatry v, 5, p. e549. , COI: 1:CAS:528:DC%2BC2MXlvFWqsLc%3D
  • Vollstädt-Klein, S., Wichert, S., Rabinstein, J., Bühler, M., Klein, O., Ende, G., Hermann, D., Mann, K., Initial, habitual and compulsive alcohol use is characterized by a shift of cue processing from ventral to dorsal striatum (2010) Addiction, 105, pp. 1741-1749. , PID: 20670348
  • Wang, N., Su, P., Zhang, Y., Lu, J., Xing, B., Kang, K., Li, W., Wang, Y., Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses (2014) Neuropsychopharmacology, 39, pp. 1290-1301. , COI: 1:CAS:528:DC%2BC2cXhtVyit7w%3D, PID: 24362306
  • Worley, C.M., Valadez, A., Schenk, S., Reinstatement of extinguished cocaine-taking behavior by cocaine and caffeine (1994) Pharmacol Biochem Behav, 48, pp. 217-221. , COI: 1:CAS:528:DyaK2cXjtFGltbc%3D, PID: 8029293

Citas:

---------- APA ----------
Muñiz, J.A., Gomez, G., González, B., Rivero-Echeto, M.C., Cadet, J.L., García-Rill, E., Urbano, F.J.,..., Bisagno, V. (2016) . Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum. Neurotoxicity Research, 29(4), 525-538.
http://dx.doi.org/10.1007/s12640-016-9601-0
---------- CHICAGO ----------
Muñiz, J.A., Gomez, G., González, B., Rivero-Echeto, M.C., Cadet, J.L., García-Rill, E., et al. "Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum" . Neurotoxicity Research 29, no. 4 (2016) : 525-538.
http://dx.doi.org/10.1007/s12640-016-9601-0
---------- MLA ----------
Muñiz, J.A., Gomez, G., González, B., Rivero-Echeto, M.C., Cadet, J.L., García-Rill, E., et al. "Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum" . Neurotoxicity Research, vol. 29, no. 4, 2016, pp. 525-538.
http://dx.doi.org/10.1007/s12640-016-9601-0
---------- VANCOUVER ----------
Muñiz, J.A., Gomez, G., González, B., Rivero-Echeto, M.C., Cadet, J.L., García-Rill, E., et al. Combined Effects of Simultaneous Exposure to Caffeine and Cocaine in the Mouse Striatum. Neurotoxic. Res. 2016;29(4):525-538.
http://dx.doi.org/10.1007/s12640-016-9601-0