Artículo

Raineri, M.; González, B.; Rivero-Echeto, C.; Muñiz, J.A.; Gutiérrez, M.L.; Ghanem, C.I.; Cadet, J.L.; García-Rill, E.; Urbano, F.J.; Bisagno, V. "Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil’s Actions Against Methamphetamine-Induced Striatal Toxicity in Mice" (2015) Neurotoxicity Research. 27(1):71-83
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Methamphetamine (METH) exposure can produce hyperthermia that might lead to toxicity and death. Modafinil is a wake-promoting compound that is also been prescribed off-label to treat METH dependence. Modafinil has shown neuroprotective properties against METH harmful effects in animal models. The goal of the present study was to test if the prevention of hyperthermia might play a role on the neuroprotective actions of modafinil against METH toxicity using various ambient temperatures. METH was administered to female C57BL/6 mice in a binge regimen: 4 × 5 mg/kg, 2 h apart; modafinil (90 mg/kg) was injected twice, 1 h before first and fourth METH injections. Drugs were given at cold ambient temperature (14 °C) or hot ambient temperature (29 °C). Body temperature was measured during treatments. Brains were dissected out 6 days after treatments and processed for tyrosine hydroxylase (TH), dopamine transporter (DAT), GFAP and c-Fos immunohistochemistry. Exposure to hot ambient temperature exacerbated METH toxicity evidenced by striatal reductions in TH and DAT and increased GFAP immmunoreactivity. Modafinil counteracted reductions in TH and DAT, but failed to block astroglial activation. At both ambient temperatures tested modafinil did induce increments in GFAP, but the magnitude was significantly lower than the one induced by METH. Both drugs induced increases in c-Fos positive nuclei; modafinil did not block this effect. Our results suggest that protective effects of modafinil against METH-induced neurotoxicity may be dependent, in part, to its hypothermic effects. Nevertheless, modafinil maintained some protective properties on METH-induced alterations in the striatum at different ambient temperatures. © 2014, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil’s Actions Against Methamphetamine-Induced Striatal Toxicity in Mice
Autor:Raineri, M.; González, B.; Rivero-Echeto, C.; Muñiz, J.A.; Gutiérrez, M.L.; Ghanem, C.I.; Cadet, J.L.; García-Rill, E.; Urbano, F.J.; Bisagno, V.
Filiación:Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (ININFA-UBA-CONICET), Ciudad Autónoma de Buenos Aires, Junín 956, piso 5, Buenos Aires, C1113, Argentina
Laboratorio de Fisiología y Biología Molecular, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
Palabras clave:Astroglia; Dopamine; Methamphetamine; Modafinil; Striatum; Toxicity; dopamine transporter; glial fibrillary acidic protein; methamphetamine; modafinil; placebo; protein c fos; tyrosine 3 monooxygenase; benzhydryl derivative; dopamine receptor stimulating agent; methamphetamine; modafinil; neuroprotective agent; animal cell; animal experiment; animal model; animal tissue; Article; body temperature disorder; body temperature measurement; cell nucleus; cellular distribution; controlled study; corpus striatum; correlational study; disease marker; down regulation; drug protein binding; drug targeting; environmental exposure; environmental temperature; female; hyperthermia; immunohistochemistry; immunoreactivity; mouse; mouse model; neuropharmacology; neuroprotection; neurotoxicity; nonhuman; priority journal; protein determination; protein expression; protein localization; thermal exposure; thermoregulation; tissue distribution; upregulation; animal; C57BL mouse; chemically induced; cold; cytology; drug effects; heat; hypothermia; metabolism; neostriatum; nerve cell; Animals; Benzhydryl Compounds; Cold Temperature; Dopamine Agents; Dopamine Plasma Membrane Transport Proteins; Female; Hot Temperature; Hypothermia; Methamphetamine; Mice; Mice, Inbred C57BL; Neostriatum; Neurons; Neuroprotective Agents; Proto-Oncogene Proteins c-fos; Tyrosine 3-Monooxygenase
Año:2015
Volumen:27
Número:1
Página de inicio:71
Página de fin:83
DOI: http://dx.doi.org/10.1007/s12640-014-9493-9
Título revista:Neurotoxicity Research
Título revista abreviado:Neurotoxic. Res.
ISSN:10298428
CODEN:NURRF
CAS:methamphetamine, 28297-73-6, 51-57-0, 537-46-2, 7632-10-2; modafinil, 68693-11-8; tyrosine 3 monooxygenase, 9036-22-0; Benzhydryl Compounds; Dopamine Agents; Dopamine Plasma Membrane Transport Proteins; Methamphetamine; modafinil; Neuroprotective Agents; Proto-Oncogene Proteins c-fos; Tyrosine 3-Monooxygenase
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10298428_v27_n1_p71_Raineri

Referencias:

  • Albers, D.S., Sonsalla, P.K., Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents (1995) J Pharmacol Exp Ther, 275, pp. 1104-1114. , COI: 1:CAS:528:DyaK28XhvVymsQ%3D%3D, PID: 8531070
  • Ali, S.F., Newport, G.D., Holson, R.R., Slikker, W., Jr., Bowyer, J.F., Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice (1994) Brain Res, 658 (1-2), pp. 33-38. , COI: 1:CAS:528:DyaK2cXlvFGrsLY%3D, PID: 7530580
  • Block, M.L., Hong, J.S., Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism (2005) Prog Neurobiol, 76 (2), pp. 77-98. , COI: 1:CAS:528:DC%2BD2MXpvFemu7o%3D, PID: 16081203
  • Bowyer, J.F., Tank, A.W., Newport, G.D., Slikker, W., Jr., Ali, S.F., Holson, R.R., The influence of environmental temperature on the transient effects of methamphetamine on dopamine levels and dopamine release in rat striatum (1992) J Pharmacol Exp Ther, 260 (2), pp. 817-824. , COI: 1:CAS:528:DyaK38XhsVektrk%3D, PID: 1346646
  • Bowyer, J.F., Gough, B., Slikker, W., Jr., Lipe, G.W., Newport, G.D., Holson, R.R., Effects of a cold environment or age on methamphetamine-induced dopamine release in the caudate putamen of female rats (1993) Pharmacol Biochem Behav, 44 (1), pp. 87-98. , COI: 1:CAS:528:DyaK3sXpsVahsQ%3D%3D, PID: 8094252
  • Bowyer, J.F., Davies, D.L., Schmued, L., Broening, H.W., Newport, G.D., Slikker, W., Holson, R.R., Further studies of the role of hyperthermia in methamphetamine neurotoxicity (1994) J Pharmacol Exp Ther, 268, pp. 1571-1580. , COI: 1:CAS:528:DyaK2cXis1WhsLo%3D, PID: 8138969
  • Bowyer, J.F., Holson, R.R., Miller, D.B., O’Callaghan, J.P., Phenobarbital and dizocilpine can block methamphetamine-induced neurotoxicity in mice by mechanisms that are independent of thermoregulation (2001) Brain Res, 919, pp. 179-183. , COI: 1:CAS:528:DC%2BD3MXnvFCktrc%3D, PID: 11689178
  • Bowyer, J.F., Robinson, B., Ali, S., Schmued, L.C., Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood–brain barrier in the caudate-putamen from acute methamphetamine exposure (2008) Synapse, 62, pp. 193-204. , COI: 1:CAS:528:DC%2BD1cXhs1Cqs70%3D, PID: 18081184
  • Cadet, J.L., Brannock, C., Free radicals and the pathobiology of brain dopamine systems (1998) Neurochem Int, 32 (2), pp. 117-131. , COI: 1:CAS:528:DyaK1cXitVWjsLc%3D, PID: 9542724
  • Cadet, J.L., Jayanthi, S., McCoy, M.T., Ladenheim, B., Saint-Preux, F., Lehrmann, E., De, S., Brannock, C., Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum (2013) BMC Genom, 14, p. 545. , COI: 1:CAS:528:DC%2BC3sXhsVKrt7fM
  • Cadet, J.L., Bisagno, V., Milroy, C.M., Neuropathology of substance use disorders (2014) Acta Neuropathol, 127 (1), pp. 91-107. , COI: 1:CAS:528:DC%2BC3sXhvVOnsLnJ, PID: 24292887
  • Callahan, B.T., Cord, B.J., Yuan, J., McCann, U.D., Ricaurte, G.A., Inhibitors of Na (+) /H (+) and Na (+) /Ca (2+) exchange potentiate methamphetamine-induced dopamine neurotoxicity: possible role of ionic dysregulation in methamphetamine neurotoxicity (2001) J Neurochem, 77, pp. 1348-1362. , COI: 1:CAS:528:DC%2BD3MXkt12qtLc%3D, PID: 11389186
  • Cass, W.A., Smith, M.P., Peters, L.E., Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine (2006) Ann N Y Acad Sci, 1074, pp. 261-271. , COI: 1:CAS:528:DC%2BD28XhtFGgs7zK, PID: 17105922
  • Chipana, C., Torres, I., Camarasa, J., Pubill, D., Escubedo, E., Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents (2008) Neuropharmacology, 54, pp. 1254-1263. , COI: 1:CAS:528:DC%2BD1cXmsVaktLc%3D, PID: 18455739
  • Cubells, J.F., Rayport, S., Rajendran, G., Sulzer, D., Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress (1994) J Neurosci, 14 (4), pp. 2260-2271. , COI: 1:CAS:528:DyaK2cXkslemsb4%3D, PID: 8158268
  • Deng, X., Ladenheim, B., Tsao, L.I., Cadet, J.L., Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity (1999) J Neurosci, 19, pp. 10107-10115. , COI: 1:CAS:528:DyaK1MXnsValurg%3D, PID: 10559418
  • Deng, X., Ladenheim, B., Jayanthi, S., Cadet, J.L., Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb (2007) Biol Psychiatry, 61, pp. 1235-1243. , COI: 1:CAS:528:DC%2BD2sXls1aju78%3D, PID: 17161385
  • Donovan, D.M., Miner, L.L., Perry, M.P., Revay, R.S., Sharpe, L.G., Przedborski, S., Kostic, V., Uhl, G.R., Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression (1999) Brain Res Mol Brain Res, 73 (1-2), pp. 37-49. , COI: 1:CAS:528:DyaK1MXns1aht7k%3D, PID: 10581396
  • Fiocchi, E.M., Lin, Y.G., Aimone, L., Gruner, J.A., Flood, D.G., Armodafinil promotes wakefulness and activates Fos in rat brain (2009) Pharmacol Biochem Behav, 92 (3), pp. 549-557. , COI: 1:CAS:528:DC%2BD1MXjsFWrtrc%3D, PID: 19249327
  • Flora, G., Lee, Y.W., Nath, A., Maragos, W., Hennig, B., Toborek, M., Methamphetamine-induced TNF-alpha gene expression and activation of AP-1 in discrete regions of mouse brain: potential role of reactive oxygen intermediates and lipid peroxidation (2002) Neuromolecular Med, 2 (1), pp. 71-85. , COI: 1:CAS:528:DC%2BD38XmvFOjs7s%3D, PID: 12230306
  • Fumagalli, F., Gainetdinov, R.R., Valenzano, K.J., Caron, M.G., Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter (1998) J Neurosci, 18 (13), pp. 4861-4869. , COI: 1:CAS:528:DyaK1cXkt1Smt74%3D, PID: 9634552
  • Gainetdinov, R.R., Fumagalli, F., Jones, S.R., Caron, M.G., Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter (1997) J Neurochem, 69 (3), pp. 1322-1325. , COI: 1:CAS:528:DyaK2sXls1Chu7w%3D, PID: 9282960
  • Garcia-Rill, E., Heister, D.S., Ye, M., Charlesworth, A., Hayar, A., Electrical coupling: novel mechanism for sleep-wake control (2007) Sleep, 30 (11), pp. 1405-1414. , PID: 18041475
  • González, B., Raineri, M., Cadet, J.L., García-Rill, E., Urbano, F.J., Bisagno, V., Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice (2014) Neuropharmacology, , PID: 24530829
  • Gozzi, A., Colavito, V., Seke Etet, P.F., Montanari, D., Fiorini, S., Tambalo, S., Bifone, A., Bentivoglio, M., Modulation of fronto-cortical activity by modafinil: a functional imaging and fos study in the rat (2012) Neuropsychopharmacology, 37 (3), pp. 822-837. , COI: 1:CAS:528:DC%2BC38XnslOltw%3D%3D, PID: 22048464
  • Gruner, J.A., Marcy, V.R., Lin, Y.G., Bozyczko-Coyne, D., Marino, M.J., The roles of dopamine transport inhibition and dopamine release facilitation in wake enhancement and rebound hypersomnolence induced by dopaminergic agents (2009) Sleep, 32, pp. 1425-1438. , PID: 19928382
  • Krasnova, I.N., Cadet, J.L., Methamphetamine toxicity and messengers of death (2009) Brain Res Rev, 60 (2), pp. 340-379
  • Ladenheim, B., Krasnova, I.N., Deng, X., Oyler, J.M., Polettini, A., Moran, T.H., Huestis, M.A., Cadet, J.L., Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6 (2000) Mol Pharmacol, 58 (6), pp. 1247-1256. , COI: 1:CAS:528:DC%2BD3cXovFeru7Y%3D, PID: 11093760
  • Madras, B.K., Xie, Z., Lin, Z., Jassen, A., Panas, H., Lynch, L., Johnson, R., Fischman, A.J., Modafinil occupies dopamine and norepinephrine transporters in vivo and modulates the transporters and trace amine activity in vitro (2006) J Pharmacol Exp Ther, 319 (2), pp. 561-569. , COI: 1:CAS:528:DC%2BD28XhtFOkur3N, PID: 16885432
  • Martin, T.A., Jayanthi, S., McCoy, M.T., Brannock, C., Ladenheim, B., Garrett, T., Lehrmann, E., Cadet, J.L., Methamphetamine causes differential alterations in gene expression and patterns of histone acetylation/hypoacetylation in the rat nucleus accumbens (2012) PLoS One, 7 (3), p. e34236. , COI: 1:CAS:528:DC%2BC38Xlt12gs74%3D, PID: 22470541
  • Matsumoto, R.R., Seminerio, M.J., Turner, R.C., Robson, M.J., Nguyen, L., Miller, D.B., O’Callaghan, J.P., Methamphetamine-induced toxicity: an updated review on issues related to hyperthermia. Pharmacol Ther (2014) doi:10.1016/j.pharmthera.2014.05.001
  • Mereu, M., Bonci, A., Newman, A.H., Tanda, G., The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders (2013) Psychopharmacology, 229 (3), pp. 415-434. , COI: 1:CAS:528:DC%2BC3sXht1CrsLvN, PID: 23934211
  • Miller, D.B., O’Callaghan, J.P., Environment-, drug- and stress-induced alterations in body temperature affect the neurotoxicity of substituted amphetamines in the C57BL/6J mouse (1994) J Pharmacol Exp Ther, 270 (2), pp. 752-760. , COI: 1:CAS:528:DyaK2cXlslSntro%3D, PID: 8071868
  • Milligan, E.D., Watkins, L.R., Pathological and protective roles of glia in chronic pain (2009) Nat Rev Neurosci, 10 (1), pp. 23-36. , COI: 1:CAS:528:DC%2BD1MXpt1ek, PID: 19096368
  • Minzenberg, M.J., Carter, C.S., Modafinil: a review of neurochemical actions and effects on cognition (2008) Neuropsychopharmacology, 33 (7), pp. 1477-1502. , COI: 1:CAS:528:DC%2BD1cXlvVSrtrc%3D, PID: 17712350
  • Namiki, M., Mori, T., Sawaguchi, T., Ito, S., Suzuki, T., Underlying mechanism of combined effect of methamphetamine and morphine on lethality in mice and therapeutic potential of cooling (2005) J Pharmacol Sci, 99 (2), pp. 168-176. , COI: 1:CAS:528:DC%2BD2MXhtFOns7vP, PID: 16210775
  • O’Callaghan, J.P., Miller, D.B., Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse (1994) J Pharmacol Exp Ther, 270 (2), pp. 741-751. , PID: 8071867
  • Okuro, M., Fujiki, N., Kotorii, N., Ishimaru, Y., Sokoloff, P., Nishino, S., Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice (2010) Sleep, 33 (7), pp. 930-942. , PID: 20614853
  • Pu, C., Fisher, J.E., Cappon, G.D., Vorhees, C.V., The effects of amfonelic acid, a dopamine uptake inhibitor, on methamphetamine-induced dopaminergic terminal degeneration and astrocytic response in rat striatum (1994) Brain Res, 649 (1-2), pp. 217-224. , COI: 1:CAS:528:DyaK2cXksFSjsrc%3D, PID: 7953636
  • Raineri, M., Peskin, V., Goitia, B., Taravini, I.R., Giorgeri, S., Urbano, F.J., Bisagno, V., Attenuated methamphetamine induced neurotoxicity by modafinil administration in mice (2011) Synapse, 65 (10), pp. 1087-1098. , COI: 1:CAS:528:DC%2BC3MXpsFarsLs%3D, PID: 21590747
  • Raineri, M., Gonzalez, B., Goitia, B., Garcia-Rill, E., Krasnova, I.N., Cadet, J.L., Urbano, F.J., Bisagno, V., Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum (2012) PLoS ONE, 7 (10), p. e46599. , COI: 1:CAS:528:DC%2BC38XhsFalu7bJ, PID: 23056363
  • Reichel, C.M., Gilstrap, M.G., Ramsey, L.A., See, R.E., Modafinil restores methamphetamine induced object-in-place memory deficits in rats independent of glutamate N-methyl-d-aspartate receptor expression (2014) Drug Alcohol Depend, 134, pp. 115-122. , COI: 1:CAS:528:DC%2BC3sXhs1WitLrP, PID: 24120858
  • Riddle, E.L., Fleckenstein, A.E., Hanson, G.R., Mechanisms of methamphetamine-induced dopaminergic neurotoxicity (2006) AAPS J, 8 (2), pp. E413-E418. , PID: 16808044
  • Sagar, S.M., Sharp, F.R., Curran, T., Expression of c-fos protein in brain: metabolic mapping at the cellular level (1988) Science, 240 (4857), pp. 1328-1331. , COI: 1:CAS:528:DyaL1cXkt1SlsLY%3D, PID: 3131879
  • Sahu, S., Kauser, H., Ray, K., Kishore, K., Kumar, S., Panjwani, U., Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus (2013) Exp Neurol, 248, pp. 470-481. , COI: 1:CAS:528:DC%2BC3sXhsVKkurfO, PID: 23920241
  • Schep, L.J., Slaughter, R.J., Beasley, D.M., The clinical toxicology of metamfetamine (2010) Clin Toxicol (Phila), 48, pp. 675-694. , COI: 1:CAS:528:DC%2BC3cXhtFOktb7P
  • Song, D.D., Haber, S.N., Striatal responses to partial dopaminergic lesion: evidence for compensatory sprouting (2000) J Neurosci, 20, pp. 5102-5114. , COI: 1:CAS:528:DC%2BD3cXksF2jtL4%3D, PID: 10864967
  • Urbano, F.J., Leznik, E., Llinás, R.R., Modafinil enhances thalamocortical activity by increasing neuronal electrotonic coupling (2007) Proc Natl Acad Sci USA, 104 (30), pp. 12554-12559. , COI: 1:CAS:528:DC%2BD2sXos1Wksrw%3D, PID: 17640897
  • Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Leonido-Yee, M., Franceschi, D., Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers (2001) Am J Psychiatry, 158, pp. 377-382. , COI: 1:STN:280:DC%2BD3M7pslSltQ%3D%3D, PID: 11229977
  • Volkow, N.D., Chang, L., Wang, G.J., Fowler, J.S., Franceschi, D., Sedler, M., Effects of modafinil on dopamine and dopamine transporters in the male human brain: clinical implications (2009) JAMA, 301 (11), pp. 1148-1154. , COI: 1:CAS:528:DC%2BD1MXjsVOlsbY%3D, PID: 19293415
  • Wilson, J.M., Kalasinsky, K.S., Levey, A.I., Bergeron, C., Reiber, G., Anthony, R.M., Schmunk, G.A., Kish, S.J., Striatal dopamine nerve terminal markers in human, chronic methamphetamine users (1996) Nat Med, 2 (6), pp. 699-703. , COI: 1:CAS:528:DyaK28XjsVSjurw%3D, PID: 8640565
  • Xie, T., McCann, U.D., Kim, S., Yuan, J., Ricaurte, G.A., Effect of temperature on dopamine transporter function and intracellular accumulation of methamphetamine: implications for methamphetamine-induced dopaminergic neurotoxicity (2000) J Neurosci, 20 (20), pp. 7838-7845. , COI: 1:CAS:528:DC%2BD3cXns1eit70%3D, PID: 11027249
  • Zhang, L., Kitaichi, K., Fujimoto, Y., Nakayama, H., Shimizu, E., Iyo, M., Hashimoto, K., Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine (2006) Prog Neuropsychopharmacol Biol Psychiatry, 30, pp. 1381-1393. , COI: 1:CAS:528:DC%2BD28XhtFCjsLjF, PID: 16839653
  • Zolkowska, D., Jain, R., Rothman, R.B., Partilla, J.S., Roth, B.L., Setola, V., Prisinzano, T.E., Baumann, M.H., Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil (2009) J Pharmacol Exp Ther, 329, pp. 738-746. , COI: 1:CAS:528:DC%2BD1MXlt1OlsL4%3D, PID: 19197004

Citas:

---------- APA ----------
Raineri, M., González, B., Rivero-Echeto, C., Muñiz, J.A., Gutiérrez, M.L., Ghanem, C.I., Cadet, J.L.,..., Bisagno, V. (2015) . Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil’s Actions Against Methamphetamine-Induced Striatal Toxicity in Mice. Neurotoxicity Research, 27(1), 71-83.
http://dx.doi.org/10.1007/s12640-014-9493-9
---------- CHICAGO ----------
Raineri, M., González, B., Rivero-Echeto, C., Muñiz, J.A., Gutiérrez, M.L., Ghanem, C.I., et al. "Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil’s Actions Against Methamphetamine-Induced Striatal Toxicity in Mice" . Neurotoxicity Research 27, no. 1 (2015) : 71-83.
http://dx.doi.org/10.1007/s12640-014-9493-9
---------- MLA ----------
Raineri, M., González, B., Rivero-Echeto, C., Muñiz, J.A., Gutiérrez, M.L., Ghanem, C.I., et al. "Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil’s Actions Against Methamphetamine-Induced Striatal Toxicity in Mice" . Neurotoxicity Research, vol. 27, no. 1, 2015, pp. 71-83.
http://dx.doi.org/10.1007/s12640-014-9493-9
---------- VANCOUVER ----------
Raineri, M., González, B., Rivero-Echeto, C., Muñiz, J.A., Gutiérrez, M.L., Ghanem, C.I., et al. Differential Effects of Environment-Induced Changes in Body Temperature on Modafinil’s Actions Against Methamphetamine-Induced Striatal Toxicity in Mice. Neurotoxic. Res. 2015;27(1):71-83.
http://dx.doi.org/10.1007/s12640-014-9493-9