Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The glass transition temperature, Tg, is one of the most important properties of amorphous polymers. The ability to predict the Tg value of a polymer preceding its synthesis is of enormous value. For this reason it is of great value to perform a predictive quantitative structure–property relationships analysis of Tg, in this case a new set of halogenated polymers was used for this purpose. In addition, to corroborate our previous findings, the best way to encode the polymers structure for this type of studies was further tested finding that the optimal option is once more to use three monomeric units. The best linear model constructed from 153 molecular structures incorporated seven molecular descriptors and showed excellent predictive ability. Furthermore, the method showed to be very simple and straightforward for the prediction of Tg since three-dimensional descriptors are not required. © 2017 Taylor & Francis.

Registro:

Documento: Artículo
Título:Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships
Autor:Mercader, A.G.; Bacelo, D.E.; Duchowicz, P.R.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, CCT La Plata-CONICET, UNLP, La Plata, Argentina
Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano, Buenos Aires, Argentina
Palabras clave:Computational techniques; computer modeling and simulation; glass transitions; halogenated polymers; QSPR; Encoding (symbols); Forecasting; Glass; Halogenation; Polymers; Signal encoding; Temperature; Computational technique; Computer modeling and simulation; Halogenated polymers; Molecular descriptors; Predictive abilities; QSPR; Quantitative structures; Three-dimensional descriptors; Glass transition
Año:2017
Volumen:22
Número:7
Página de inicio:639
Página de fin:648
DOI: http://dx.doi.org/10.1080/1023666X.2017.1358847
Título revista:International Journal of Polymer Analysis and Characterization
Título revista abreviado:Int. J. Polym. Anal. Charact.
ISSN:1023666X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1023666X_v22_n7_p639_Mercader

Referencias:

  • Van Krevelen, D.W., (1990) Properties of Polymers, , Amsterdam: Elsevier
  • Yu, X., Support vector machine-based QSPR for the prediction of glass transition temperatures of polymers (2010) Fibers Polym., 11, pp. 757-766
  • Krause, S., Gormley, J.J., Roman, N., Shetter, J.A., Watanabe, W.H., Glass temperatures of some acrylic polymers (1965) J. Polym. Sci. A Polym. Chem., 3, pp. 3573-3586
  • Bicerano, J., (1996) Prediction of Polymer Properties, , New York: CRC Press
  • Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S., Graphene-based polymer nanocomposites (2011) Polymer, 52, pp. 5-25
  • Song, K., Zhang, Y., Meng, J., Green, E., Tajaddod, N., Li, H., Minus, M., Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship (2013) Materials, 6, p. 2543
  • Ma, P.-C., Siddiqui, N.A., Marom, G., Kim, J.-K., Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review (2010) Compos. A Appl. Sci. Manuf., 41, pp. 1345-1367
  • Katritzky, A.R., Sild, S., Lobanov, V., Karelson, M., Quantitative structure−property relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers (1998) J. Chem. Inf. Comput. Sci., 38, pp. 300-304
  • Katritzky, A.R., Rachwal, P., Law, K.W., Karelson, M., Lobanov, V.S., Prediction of polymer glass transition temperatures using a general quantitative structure−property relationship treatment (1996) J. Chem. Inf. Comput. Sci., 36, pp. 879-884
  • Cao, C., Lin, Y., Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers (2003) J. Chem. Inf. Comput. Sci., 43, pp. 643-650
  • Mattioni, B.E., Jurs, P.C., Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks (2002) J. Chem. Inf. Comput. Sci., 42, pp. 232-240
  • Chen, X., Sztera, L., Cartwright, H., A neural network approach to prediction of glass transition temperature of polymers (2008) Int. J. Intell. Sys., 23, pp. 22-32
  • Liu, W., Cao, C., Artificial neural network prediction of glass transition temperature of polymers (2009) Colloid. Polym. Sci., 287, pp. 811-818
  • Duchowicz, P.R., Fioressi, S.E., Bacelo, D.E., Saavedra, L.M., Toropova, A.P., Toropov, A.A., QSPR studies on refractive indices of structurally heterogeneous polymers (2015) Chemom. Intell. Lab. Syst., 140, pp. 86-91
  • Mercader, A.G., Duchowicz, P.R., Encoding alternatives for the prediction of polyacrylates glass transition temperature by quantitative structure–property relationships (2016) Mater. Chem. Phys., 172, pp. 158-164
  • Askadskii, A.A., (2003) Computational Materials Science of Polymers, , Cambridge: Cambridge International Science Publishing
  • Rojas, C., Tripaldi, P., Duchowicz, P.R., A new QSPR study on relative sweetness (2016) Int. J. Quant. Struct.-Prop. Relat., 1, pp. 78-93
  • Rojas, C., Duchowicz, P.R., Tripaldi, P., Pis Diez, R., Quantitative structure–property relationship analysis for the retention index of fragrance-like compounds on a polar stationary phase (2015) J. Chromatogr. A, 1422, pp. 277-288
  • Rojas, C., Duchowicz, P.R., Tripaldi, P., Diez, R.P., QSPR analysis for the retention index of flavors and fragrances on a OV-101 column (2015) Chemom. Intell. Lab. Syst., 140, pp. 126-132
  • Kaufman, L., Rousseeuw, P.J., (2005) Finding Groups in Data: An Introduction to Cluster Analysis, , New York: Wiley-Interscience, and
  • Tetko, I., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V.A., Prokopenko, V.V., Virtual computational chemistry laboratory–Design and description (2005) J. Comput. Aided Mol. Des., 19, pp. 453-463
  • http://www.disatunimibit/chm, DRAGON, Release 50 Evaluation Version. accessed March 7, 2016); Mercader, A.G., Duchowicz, P.R., Fernández, F.M., Castro, E.A., Advances in the replacement and enhanced replacement method in QSAR and QSPR theories (2011) J. Chem. Inf. Model., 51, pp. 1575-1581
  • Lee, A., Mercader, A.G., Duchowicz, P.R., Castro, E.A., Pomilio, A.B., QSAR study of the DPPH radical scavenging activity of di(hetero)arylamines derivatives of benzo[b]thiophenes, halophenols and caffeic acid analogues (2012) Chemom. Intell. Lab. Syst., 116, pp. 33-40
  • Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories (2008) Chemom. Intell. Lab. Syst., 92, pp. 138-144
  • Draper, N.R., Smith, H., (1981) Applied Regression Analysis, , New York: John Wiley & Sons, and
  • Mercader, A.G., Duchowicz, P.R., Fernandez, F.M., Castro, E.A., Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories (2010) J. Chem. Inf. Model., 50, pp. 1542-1548
  • Mercader, A.G., Duchowicz, P.R., Enhanced replacement method integration with genetic algorithms populations in QSAR and QSPR theories (2015) Chemom. Intell. Lab. Syst., 149, pp. 117-122
  • Saxena, A.K., Prathipati, P., Comparison of MLR, PLS and GA-MLR in QSAR analysis (2003) SAR QSAR Environ. Res., 14, pp. 433-445
  • Le, T., Epa, V.C., Burden, F.R., Winkler, D.A., Quantitative structure–property relationship modeling of diverse materials properties (2012) Chem. Rev., 112, pp. 2889-2919
  • Wold, S., Eriksson, L., Statistical validation of QSAR results (1995) Chemometrics Methods in Molecular Design, , Waterbeemd H.V.D., (ed), Weinheim: VCH, 309–318, and,. In, ed
  • Hawkins, D.M., Basak, S., Mills, D., Assessing model fit by cross-validation (2003) J. Chem. Inf. Model., 43, pp. 579-586
  • Ravichran, V., Shalini, S., Sundram, K., Sokkalingam, A.D., QSAR study of substituted 1,3,4-oxadiazole naphthyridines as HIV-1 integrase inhibitors (2010) Eur. J. Med. Chem., 45, pp. 2791-2797
  • Roy, K., On some aspects of validation of predictive quantitative structure–activity relationship models (2007) Expert Opin. Drug Discov., 2, pp. 1567-1577
  • Gramatica, P., Principles of QSAR models validation: Internal and external (2007) QSAR Comb. Sci., 26, pp. 694-701
  • Eriksson, L., Jaworska, J., Worth, A.P., Cronin, M.T., McDowell, R.M., Gramatica, P., Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs (2003) Environ. Health Perspect., 111, pp. 1361-1375
  • Golbraikh, A., Tropsha, A., Beware of q2! (2002) J. Mol. Graphics Modell., 20, pp. 269-276

Citas:

---------- APA ----------
Mercader, A.G., Bacelo, D.E. & Duchowicz, P.R. (2017) . Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships. International Journal of Polymer Analysis and Characterization, 22(7), 639-648.
http://dx.doi.org/10.1080/1023666X.2017.1358847
---------- CHICAGO ----------
Mercader, A.G., Bacelo, D.E., Duchowicz, P.R. "Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships" . International Journal of Polymer Analysis and Characterization 22, no. 7 (2017) : 639-648.
http://dx.doi.org/10.1080/1023666X.2017.1358847
---------- MLA ----------
Mercader, A.G., Bacelo, D.E., Duchowicz, P.R. "Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships" . International Journal of Polymer Analysis and Characterization, vol. 22, no. 7, 2017, pp. 639-648.
http://dx.doi.org/10.1080/1023666X.2017.1358847
---------- VANCOUVER ----------
Mercader, A.G., Bacelo, D.E., Duchowicz, P.R. Different encoding alternatives for the prediction of halogenated polymers glass transition temperature by quantitative structure–property relationships. Int. J. Polym. Anal. Charact. 2017;22(7):639-648.
http://dx.doi.org/10.1080/1023666X.2017.1358847