Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A kinetic study of ethanol steam reforming to produce hydrogen within the region of kinetic rate control was carried out. A Ni(II)-Al(III) lamellar double hydroxide as catalyst precursor was used. H2, CO, CO2 and CH4 were obtained as products. Using the Langmuir-Hinshelwood (L-H) approach, two kinetic models were proposed. The first was a general model including four reactions, two of them corresponding to ethanol steam reforming and the other two to methane steam reforming. When high temperatures and/or high water/ethanol feed ratios were used, the system could be reduced to two irreversible ethanol steam reforming reactions. © Springer Science+Business Media, LLC 2008.

Registro:

Documento: Artículo
Título:A kinetic study of ethanol steam reforming using a nickel based catalyst
Autor:Mas, V.; Bergamini, M.L.; Baronetti, G.; Amadeo, N.; Laborde, M.
Filiación:Laboratorio de Procesos Catalíticos, Departamento de Ingeniería Química, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Ethanol steam reforming; Hydrogen; Kinetics; Langmuir-hinshelwood approach; Ni catalyst; Catalyst precursors; Double hydroxides; Ethanol steam reforming; Feed ratios; General model; High temperature; High water; Kinetic models; Kinetic rates; Kinetic study; Langmuir-Hinshelwood; Methane steam reforming; Ni catalyst; Nickel based catalysts; Carbon dioxide; Catalysts; Enzyme kinetics; Ethanol; Hydrogen; Kinetic theory; Kinetics; Methane; Steam; Steam engineering; Steam reforming
Año:2008
Volumen:51
Número:1-4
Página de inicio:39
Página de fin:48
DOI: http://dx.doi.org/10.1007/s11244-008-9123-y
Título revista:Topics in Catalysis
Título revista abreviado:Top. Catal.
ISSN:10225528
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10225528_v51_n1-4_p39_Mas

Referencias:

  • Klouz, V., Fierro, V., Denton, P., Katz, H., Lisse, J.P., Mauduit, S.B., Mirodatos, C., (2001) J Power Sources, 4549, p. 1
  • Brown, L.F., (2001) Int J Hydrogen Energy, 26, p. 381
  • Mariño, F.J., Boveri, M., Baronetti, G., Laborde, M., (2001) Int J Hydrogen Energy, 26, p. 665. , 7
  • Auprêtre, F., Descorme, C., Duprez, D., (2002) Catal Commun, 3, p. 263
  • Comas, J., Mariño, F., Laborde, M., Amadeo, N., (2004) Chem Eng J, 98, p. 61
  • Fatsikostas, A.N., Verykios, X.E., (2004) J Catal, 225, p. 439
  • Garcia, E.Y., Laborde, M.A., (1991) Int J Hydrogen Energy, 16, p. 307
  • Mas, V., Kipreos, R., Amadeo, N., Laborde, M., (2006) Int J Hydrogen Energy, 31, p. 21
  • Llorca, J., Homes, N., Sales, J., Ramírez De La Piscina, P., (2002) J Catal, 209, p. 306
  • Llorca, J., Ramírez De La Piscina, P., Delmon, J.A., Sales, J., Homes, N., (2003) Appl Catal, 43, p. 355
  • Cavallaro, S., Chiodo, V., Freni, S., Mondillo, N., Frusteri, F., (2003) Appl Catal, 249, p. 119
  • Liguras, D.K., Kondarides, D.I., Verykios, X.E., (2001) Appl Catal B Environ, 43, p. 345
  • Zhang, B., Tang, X., Li, Y., Cai, W., Xu, Y., Shen, W., (2006) Catal Commun, 7, p. 367
  • Vaidya, P.D., Rodrigues, A., (2006) Ind Eng Chem Res, 45, p. 6614
  • Morgensen, D.A., Fornango, J.P., (2005) Energ Fuel, 19, p. 1708
  • Sun, J., Qiu, X.-P., Wu, F., Zhu, W.-T., (2005) Int J Hydrogen Energy, 30, p. 437
  • Akande, A., Aboudheir, A., Idem, R., Delai, A., (2006) Int J Hydrogen Energy, 31, p. 1707
  • Sahoo, D.R., Vajpai, S., Patel, S., Pant, K.K., (2007) Chem Eng J, 125, p. 139
  • Akpan, E., Akande, A., Aboudheir, A., Ibrahim, H., Idem, R., (2007) Chem Eng Sci, 62, p. 3112
  • Mas, V., Baronetti, G., Amadeo, N., Laborde, M., (2008) Chem Eng J, 138, p. 602
  • Brindley, G.W., Kikkawa, S., (1979) Am Mineral, 64, p. 836
  • Mas, V., Dieuzeide, M.L., Jobbágy, M., Baronetti, G., Amadeo, N., Laborde, M., (2008) Catal Today, 133-135, p. 319
  • Froment, G.F., Bishoff, K.B., (1990) Chemical Reactor Analysis and Design, , Wiley, New York
  • Elnashaie, S.S.E.H., Elshishini, S.S., Modelling, simulation and optimization of industrial fixed bed reactor (1993) Gordon and Breach Science, , New York, ch. 3
  • Xu, J., Froment, G.F., (1989) AIChE J, 35, p. 88
  • Rostrup-Nielsen, J.R., (1984) Catalytic Steam Reforming, , Springer, Berlin
  • Brooke, A., Kendrick, D., Meeraus, A., Raman, R., (1998) GAMS. A User's Guide. GAMS Development Corporation
  • Drud, A.S., CONOPT: A system for large scale nonlinear optimization, reference manual for CONOPT subroutine library (1996) ARKI Consulting and Development A/S, , Bagsvaerd, Denmark
  • Hou, K., Hughes, R., (2001) Chem Eng J, 82, p. 311

Citas:

---------- APA ----------
Mas, V., Bergamini, M.L., Baronetti, G., Amadeo, N. & Laborde, M. (2008) . A kinetic study of ethanol steam reforming using a nickel based catalyst. Topics in Catalysis, 51(1-4), 39-48.
http://dx.doi.org/10.1007/s11244-008-9123-y
---------- CHICAGO ----------
Mas, V., Bergamini, M.L., Baronetti, G., Amadeo, N., Laborde, M. "A kinetic study of ethanol steam reforming using a nickel based catalyst" . Topics in Catalysis 51, no. 1-4 (2008) : 39-48.
http://dx.doi.org/10.1007/s11244-008-9123-y
---------- MLA ----------
Mas, V., Bergamini, M.L., Baronetti, G., Amadeo, N., Laborde, M. "A kinetic study of ethanol steam reforming using a nickel based catalyst" . Topics in Catalysis, vol. 51, no. 1-4, 2008, pp. 39-48.
http://dx.doi.org/10.1007/s11244-008-9123-y
---------- VANCOUVER ----------
Mas, V., Bergamini, M.L., Baronetti, G., Amadeo, N., Laborde, M. A kinetic study of ethanol steam reforming using a nickel based catalyst. Top. Catal. 2008;51(1-4):39-48.
http://dx.doi.org/10.1007/s11244-008-9123-y