Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we extend the well-known concentration-compactness principle for the Fractional Laplacian operator in unbounded domains. As an application we show sufficient conditions for the existence of solutions to some critical equations involving the fractional p-Laplacian in the whole R n . © 2018, Springer Nature Switzerland AG.

Registro:

Documento: Artículo
Título:The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem
Autor:Bonder, J.F.; Saintier, N.; Silva, A.
Filiación:Departamento de Matemática, Instituto de Matemática Luis Santaló, IMAS - CONICET Ciudad Universitaria, FCEyN, Universidad de Buenos Aires, Pabellón I (1428) Av. Cantilo s/n, Buenos Aires, Argentina
Departamento de Matemática, Ciudad Universitaria, FCEyN, Universidad de Buenos Aires, Pabellón I (1428) Av. Cantilo s/n, Buenos Aires, Argentina
Departamento de Matemática, Instituto de Matemática Aplicada de San Luis, IMASL, CONICET, FCFMyN, Universidad Nacional de San Luis, Italia Avenue 1556, San Luis, San Luis 5700, Argentina
Palabras clave:Concentration-compactness principle; Fractional elliptic-type problems; Unbounded domains
Año:2018
Volumen:25
Número:6
DOI: http://dx.doi.org/10.1007/s00030-018-0543-5
Título revista:Nonlinear Differential Equations and Applications
Título revista abreviado:Nonlinear Diff. Equ. Appl.
ISSN:10219722
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10219722_v25_n6_p_Bonder

Referencias:

  • Akgiray, V., Geoffrey Booth, G., The siable-law model of stock returns (1988) J. Bus. Econ. Stat., 6 (1), pp. 51-57
  • Aubin, T., Problèmes isopérimétriques et espaces de Sobolev (1975) C. R. Acad. Sci. Paris Sér. A-B, 280 (5), pp. A279-A281
  • Barrios, B., Colorado, E., de Pablo, A., Sánchez, U., On some critical problems for the fractional Laplacian operator (2012) J. Differ. Equ., 252 (11), pp. 6133-6162
  • Barrios, B., Colorado, E., Servadei, R., Soria, F., A critical fractional equation with concave–convex power nonlinearities (2015) Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (4), pp. 875-900
  • Brasco, L., Mosconi, S., Squassina, M., Optimal decay of extremals for the fractional Sobolev inequality (2016) Calc. Var. Partial Differ. Equ., 55 (2), pp. Art. 23-Art. 32
  • Brézis, H., Lieb, E., A relation between pointwise convergence of functions and convergence of functionals (1983) Proc. Am. Math. Soc., 88 (3), pp. 486-490
  • Brézis, H., Nirenberg, L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents (1983) Commun. Pure Appl. Math., 36 (4), pp. 437-477
  • Bucur, C., Medina, M., (2016) A Fractional Elliptic Problem in R N with Critical Growth and Convex Nonlinearities
  • Caffarelli, L., Silvestre, L., An extension problem related to the fractional Laplacian (2007) Commun. Partial Differ. Equ., 32 (7-9), pp. 1245-1260
  • Candito, P., Marano, S.A., Perera, K., On a class of critical (p, q) -Laplacian problems (2015) Nonlinear Differ. Equ. Appl. NoDEA, 22 (6), pp. 1959-1972
  • Chabrowski, J., Concentration-compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponents (1995) Calc. Var. Partial Differ. Equ., 3 (4), pp. 493-512
  • Choi, W., Kim, S., Lee, K.-A., Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian (2014) J. Funct. Anal., 266 (11), pp. 6531-6598
  • Constantin, P., Euler Equations, Navier-Stokes Equations and Turbulence (2005) Lecture Notes in Mathematics, pp. 1-43. , Springer Berlin Heidelberg, Berlin, Heidelberg
  • Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhiker’s guide to the fractional Sobolev spaces (2012) Bull. Sci. Math., 136 (5), pp. 521-573
  • Dipierro, S., Medina, M., Peral, I., Valdinoci, E., Bifurcation results for a fractional elliptic equation with critical exponent in R n (2017) Manuscr. Math., 153 (1-2), pp. 183-230
  • Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K., Analysis and approximation of nonlocal diffusion problems with volume constraints (2012) SIAM Rev., 54 (4), pp. 667-696
  • Eringen, A.C., (2002) Nonlocal Continuum Field Theories, , Springer, New York
  • García Azorero, J., Peral Alonso, I., Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term (1991) Trans. Am. Math. Soc, 323 (2), pp. 877-895
  • Giacomin, G., Lebowitz, J.L., Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits (1997) J. Stat. Phys., 87 (1-2), pp. 37-61
  • Gilboa, G., Osher, S., Nonlocal operators with applications to image processing (2008) Multiscale Model. Simul., 7 (3), pp. 1005-1028
  • Humphries, N., Environmental context explains Lévy and Brownian movement patterns of marine predators (2010) Nature, 465, pp. 1066-1069
  • Laskin, N., Fractional quantum mechanics and Lévy path integrals (2000) Phys. Lett. A, 268 (4-6), pp. 298-305
  • Levendorski, S., Pricing of the american put under Lévy processes (2004) Int. J. Theor. Appl. Finance, 7 (3), pp. 303-335
  • Lieb, E.H., Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities (1983) Ann. of Math. (2), 118 (2), pp. 349-374
  • Lions, P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I (1985) Rev. Mat. Iberoam., 1 (1), pp. 145-201
  • Massaccesi, A., Valdinoci, E., Is a nonlocal diffusion strategy convenient for biological populations in competition? (2017) J. Math. Biol., 74 (1-2), pp. 113-147
  • Metzler, R., Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach (2000) Phys. Rep., 339 (1), p. 77
  • Mosconi, S., Perera, K., Squassina, M., Yang, Y., The Brezis–Nirenberg problem for the fractional p -Laplacian (2016) Calc. Var. Partial Differ. Equ., 55 (4), pp. Art. 105-Art. 25
  • Palatucci, G., Pisante, A., Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces (2014) Calc. Var. Partial Differ. Equ., 50 (3-4), pp. 799-829
  • Perera, K., Squassina, M., Yang, Y., Critical fractional p -Laplacian problems with possibly vanishing potentials (2016) J. Math. Anal. Appl., 433 (2), pp. 818-831
  • Ponce, A.C., Elliptic PDEs, measures and capacities, volume 23 of EMS Tracts in Mathematics (2016) From the Poisson Equations to Nonlinear Thomas-Fermi Problems, , European Mathematical Society (EMS), Zürich
  • Reynolds, A.M., Rhodes, C.J., The Lévy flight paradigm: random search patterns and mechanisms (2009) Ecology, 90 (4), pp. 877-887
  • Saintier, N., Silva, A., Local existence conditions for an equations involving the p(x) -laplacian with critical exponent in R n (2017) Nonlinear Differ. Equ. Appl., 24, p. 19
  • Schoutens, W., (2003) Lévy Processes Finance: Pricing Financial Derivatives. Willey Series in Probability and Statistics, , Willey, New York
  • Servadei, R., The Yamabe equation in a non-local setting (2013) Adv. Nonlinear Anal., 2 (3), pp. 235-270
  • Servadei, R., A critical fractional Laplace equation in the resonant case (2014) Topol. Methods Nonlinear Anal., 43 (1), pp. 251-267
  • Servadei, R., Valdinoci, E., A Brezis–Nirenberg result for non-local critical equations in low dimension (2013) Commun. Pure Appl. Anal., 12 (6), pp. 2445-2464
  • Servadei, R., Valdinoci, E., The Brezis–Nirenberg result for the fractional Laplacian (2015) Trans. Am. Math. Soc., 367 (1), pp. 67-102
  • Servadei, R., Valdinoci, E., Fractional Laplacian equations with critical Sobolev exponent (2015) Rev. Mat. Complut., 28 (3), pp. 655-676
  • Shang, X., Zhang, J., Ground states for fractional Schrödinger equations with critical growth (2014) Nonlinearity, 27 (2), pp. 187-207
  • Tan, J., The Brezis–Nirenberg type problem involving the square root of the Laplacian (2011) Calc. Var. Partial Differ. Equ., 42 (1-2), pp. 21-41
  • Triebel, H., Theory of function spaces Modern Birkhäuser Classics, , Birkhäuser/Springer Basel AG, Basel, 2010. Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]
  • Yang, Y., Perera, K., N -Laplacian problems with critical Trudinger–Moser nonlinearities (2016) Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 16 (4), pp. 1123-1138
  • Zhou, K., Qiang, D., Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions (2010) SIAM J. Numer. Anal., 48 (5), pp. 1759-1780

Citas:

---------- APA ----------
Bonder, J.F., Saintier, N. & Silva, A. (2018) . The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem. Nonlinear Differential Equations and Applications, 25(6).
http://dx.doi.org/10.1007/s00030-018-0543-5
---------- CHICAGO ----------
Bonder, J.F., Saintier, N., Silva, A. "The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem" . Nonlinear Differential Equations and Applications 25, no. 6 (2018).
http://dx.doi.org/10.1007/s00030-018-0543-5
---------- MLA ----------
Bonder, J.F., Saintier, N., Silva, A. "The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem" . Nonlinear Differential Equations and Applications, vol. 25, no. 6, 2018.
http://dx.doi.org/10.1007/s00030-018-0543-5
---------- VANCOUVER ----------
Bonder, J.F., Saintier, N., Silva, A. The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis–Nirenberg problem. Nonlinear Diff. Equ. Appl. 2018;25(6).
http://dx.doi.org/10.1007/s00030-018-0543-5