Abstract:
The purpose of this work is the analysis of the solutions to the following problems related to the fractional p-Laplacian in a Lipschitzian bounded domain Ω ⊂ RN, (FORMULA PRESENTED), where α ∈ (0, 1) and the exponent p goes to infinity.In particular we will analyze the cases: (FORMULA PRESENTED). We show the convergence of the solutions to certain limit as p →∞and identify the limit equation. In both cases,the limit problem is closely related to the Infinity Fractional Laplacian: (FORMULA PRESENTED), where (FORMULA PRESENTED). © 2016 Springer International Publishing.
Registro:
| Documento: |
Artículo
|
| Título: | Limit problems for a fractional p-laplacian as p → ∞ |
| Autor: | Ferreira, R.; Pérez-Llanos, M. |
| Filiación: | Departamento de Matemáticas Aplicada, Fac. de C.C. Químicas, U. Complutense de Madrid, Madrid, 28040, Spain Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires Ciudad Universitaria, CABA, Buenos Aires, 1428, Argentina
|
| Palabras clave: | Fractional p-Laplacian; Nonlocal problems; Viscosity solutions |
| Año: | 2016
|
| Volumen: | 23
|
| Número: | 2
|
| DOI: |
http://dx.doi.org/10.1007/s00030-016-0368-z |
| Título revista: | Nonlinear Differential Equations and Applications
|
| Título revista abreviado: | Nonlinear Diff. Equ. Appl.
|
| ISSN: | 10219722
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10219722_v23_n2_p_Ferreira |
Referencias:
- Adams, R.A., Fournier, J.F., (2008), Sobolev Spaces. Elsevier, Amsterdam; Aronsson, G., Extension of functions satisfying Lipschitz conditions (1967) Ark. Mat, 6, pp. 551-561
- Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Am. Math. Soc, 41, pp. 439-505
- Barles, G., Imbert, C., Second-order elliptic integro-differential equations: Viscosity solutions theory revisited (2008) Ann. Inst. H. Poincar Anal. Non Linèaire, 25 (3), p. 567585
- Bhattacharya, T., Dibenedetto, E., Manfredi, J., Limits as p → ∞ and related extremal problems (1991) Rend. Sem. Mat. Univ. Politec, p. 1568
- Bjorland, C., Caffarelli, L., Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian (2012) Commun. Pure Appl. Math, 65, pp. 337-380
- Bourgain, J., Brezis, H., Mironescu, P., Limiting embedding theorems for Ws,p and application (2002) J. Anal. Math, 87, p. 77101
- Chambolle, A., Lindgren, E., Monneau, R., A Hölder Infinity Laplacian (2012) ESAIM Control Optim. Calc. Var, 18 (3), pp. 799-835
- Crandall, M.G., Ishii, H., Lions, P.L., User’s guide to viscosity solutions of second order partial differential equations (1992) Bull. Am. Math. Soc, 27, pp. 1-67
- Charro, F., Peral, I., Limit Branch os solution as p →∞-Laplacian (2007) Commun. Partial Differ. Equ, 32 (1012), pp. 1965-1981
- Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhikers guide to the fractional Sobolev spaces (2012) Bull. Sci. Math, 136 (5), pp. 521-573
- Giusti, E., (2003) Direct Methods in the Calculus of Variations, , World Scientific Publishing, Singapore
- Haroske, D.D., Triebel, H., (2008) Distributions, Sobolev Spaces, Elliptic Equations, , EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich
- Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient (1993) Arch. Ration. Mech. Anal, 123, pp. 51-74
- Ishii, H., Nakamura, G., A class of integral equations and approximation of p-Laplace equations (2010) Calc. Var. Partial Differ. Equ, 37 (34), pp. 485-522
- Jylhä, H., Optimal transportation problem related to the limits of solutions of local and nonlocal p-Laplace-type problems (2015) Rev. Mat. Complut, 28 (1), pp. 49-83
- Juutinen, P., (1996) Minimization Problems for Lipschitz Functions via Viscosity Solutions, pp. 1-39
- Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Anal, 148, pp. 89-105
- Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasilinear equation (2001) SIAM J. Math. Anal, 33 (3), pp. 699-717
- Juutinen, P., Parviainen, M., Rossi, J.D., (2015) Discontinuous Gradient Constraints and the Infinity Laplacian, , Int. Math. Res. Not
- Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Partial Differ. Equ, 49 (12), pp. 795-826
- McShane, E.J., Extension of range of functions (1934) Bull. Am. Math. Soc, 40 (12), pp. 837-842
- Maz’Ya, V., Shaposhnikova, T., On the Bougain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces (2002) J. Funct. Anal, 195 (2), pp. 230-238
- Pérez-Llanos, M., Anisotropic variable exponent (P(·).q(·))-Laplacian with large exponents (2013) Adv. Nonlinear Stud, 13 (4), pp. 1003-1034
- Pérez-Llanos, M., Rossi, J.D., Limits as p(X) → ∞-harmonic functions with non-homogeneous Neumann boundary conditions (2011) Nonlinear Elliptic Partial Differential Equations, Contemporary Mathematics, 540, pp. 187-201. , American Mathematical Society, Providence
- Whitney, H., Analytic extensions of differentiable functions defined in closed sets (1934) Trans. Am. Math. Soc, 36 (1), pp. 63-89
Citas:
---------- APA ----------
Ferreira, R. & Pérez-Llanos, M.
(2016)
. Limit problems for a fractional p-laplacian as p → ∞. Nonlinear Differential Equations and Applications, 23(2).
http://dx.doi.org/10.1007/s00030-016-0368-z---------- CHICAGO ----------
Ferreira, R., Pérez-Llanos, M.
"Limit problems for a fractional p-laplacian as p → ∞"
. Nonlinear Differential Equations and Applications 23, no. 2
(2016).
http://dx.doi.org/10.1007/s00030-016-0368-z---------- MLA ----------
Ferreira, R., Pérez-Llanos, M.
"Limit problems for a fractional p-laplacian as p → ∞"
. Nonlinear Differential Equations and Applications, vol. 23, no. 2, 2016.
http://dx.doi.org/10.1007/s00030-016-0368-z---------- VANCOUVER ----------
Ferreira, R., Pérez-Llanos, M. Limit problems for a fractional p-laplacian as p → ∞. Nonlinear Diff. Equ. Appl. 2016;23(2).
http://dx.doi.org/10.1007/s00030-016-0368-z