Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of this work is the analysis of the solutions to the following problems related to the fractional p-Laplacian in a Lipschitzian bounded domain Ω ⊂ RN, (FORMULA PRESENTED), where α ∈ (0, 1) and the exponent p goes to infinity.In particular we will analyze the cases: (FORMULA PRESENTED). We show the convergence of the solutions to certain limit as p →∞and identify the limit equation. In both cases,the limit problem is closely related to the Infinity Fractional Laplacian: (FORMULA PRESENTED), where (FORMULA PRESENTED). © 2016 Springer International Publishing.

Registro:

Documento: Artículo
Título:Limit problems for a fractional p-laplacian as p → ∞
Autor:Ferreira, R.; Pérez-Llanos, M.
Filiación:Departamento de Matemáticas Aplicada, Fac. de C.C. Químicas, U. Complutense de Madrid, Madrid, 28040, Spain
Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires Ciudad Universitaria, CABA, Buenos Aires, 1428, Argentina
Palabras clave:Fractional p-Laplacian; Nonlocal problems; Viscosity solutions
Año:2016
Volumen:23
Número:2
DOI: http://dx.doi.org/10.1007/s00030-016-0368-z
Título revista:Nonlinear Differential Equations and Applications
Título revista abreviado:Nonlinear Diff. Equ. Appl.
ISSN:10219722
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10219722_v23_n2_p_Ferreira

Referencias:

  • Adams, R.A., Fournier, J.F., (2008), Sobolev Spaces. Elsevier, Amsterdam; Aronsson, G., Extension of functions satisfying Lipschitz conditions (1967) Ark. Mat, 6, pp. 551-561
  • Aronsson, G., Crandall, M.G., Juutinen, P., A tour of the theory of absolutely minimizing functions (2004) Bull. Am. Math. Soc, 41, pp. 439-505
  • Barles, G., Imbert, C., Second-order elliptic integro-differential equations: Viscosity solutions theory revisited (2008) Ann. Inst. H. Poincar Anal. Non Linèaire, 25 (3), p. 567585
  • Bhattacharya, T., Dibenedetto, E., Manfredi, J., Limits as p → ∞ and related extremal problems (1991) Rend. Sem. Mat. Univ. Politec, p. 1568
  • Bjorland, C., Caffarelli, L., Figalli, A., Nonlocal tug-of-war and the infinity fractional Laplacian (2012) Commun. Pure Appl. Math, 65, pp. 337-380
  • Bourgain, J., Brezis, H., Mironescu, P., Limiting embedding theorems for Ws,p and application (2002) J. Anal. Math, 87, p. 77101
  • Chambolle, A., Lindgren, E., Monneau, R., A Hölder Infinity Laplacian (2012) ESAIM Control Optim. Calc. Var, 18 (3), pp. 799-835
  • Crandall, M.G., Ishii, H., Lions, P.L., User’s guide to viscosity solutions of second order partial differential equations (1992) Bull. Am. Math. Soc, 27, pp. 1-67
  • Charro, F., Peral, I., Limit Branch os solution as p →∞-Laplacian (2007) Commun. Partial Differ. Equ, 32 (1012), pp. 1965-1981
  • Di Nezza, E., Palatucci, G., Valdinoci, E., Hitchhikers guide to the fractional Sobolev spaces (2012) Bull. Sci. Math, 136 (5), pp. 521-573
  • Giusti, E., (2003) Direct Methods in the Calculus of Variations, , World Scientific Publishing, Singapore
  • Haroske, D.D., Triebel, H., (2008) Distributions, Sobolev Spaces, Elliptic Equations, , EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich
  • Jensen, R., Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient (1993) Arch. Ration. Mech. Anal, 123, pp. 51-74
  • Ishii, H., Nakamura, G., A class of integral equations and approximation of p-Laplace equations (2010) Calc. Var. Partial Differ. Equ, 37 (34), pp. 485-522
  • Jylhä, H., Optimal transportation problem related to the limits of solutions of local and nonlocal p-Laplace-type problems (2015) Rev. Mat. Complut, 28 (1), pp. 49-83
  • Juutinen, P., (1996) Minimization Problems for Lipschitz Functions via Viscosity Solutions, pp. 1-39
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., The ∞-eigenvalue problem (1999) Arch. Ration. Mech. Anal, 148, pp. 89-105
  • Juutinen, P., Lindqvist, P., Manfredi, J.J., On the equivalence of viscosity solutions and weak solutions for a quasilinear equation (2001) SIAM J. Math. Anal, 33 (3), pp. 699-717
  • Juutinen, P., Parviainen, M., Rossi, J.D., (2015) Discontinuous Gradient Constraints and the Infinity Laplacian, , Int. Math. Res. Not
  • Lindgren, E., Lindqvist, P., Fractional eigenvalues (2014) Calc. Var. Partial Differ. Equ, 49 (12), pp. 795-826
  • McShane, E.J., Extension of range of functions (1934) Bull. Am. Math. Soc, 40 (12), pp. 837-842
  • Maz’Ya, V., Shaposhnikova, T., On the Bougain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces (2002) J. Funct. Anal, 195 (2), pp. 230-238
  • Pérez-Llanos, M., Anisotropic variable exponent (P(·).q(·))-Laplacian with large exponents (2013) Adv. Nonlinear Stud, 13 (4), pp. 1003-1034
  • Pérez-Llanos, M., Rossi, J.D., Limits as p(X) → ∞-harmonic functions with non-homogeneous Neumann boundary conditions (2011) Nonlinear Elliptic Partial Differential Equations, Contemporary Mathematics, 540, pp. 187-201. , American Mathematical Society, Providence
  • Whitney, H., Analytic extensions of differentiable functions defined in closed sets (1934) Trans. Am. Math. Soc, 36 (1), pp. 63-89

Citas:

---------- APA ----------
Ferreira, R. & Pérez-Llanos, M. (2016) . Limit problems for a fractional p-laplacian as p → ∞. Nonlinear Differential Equations and Applications, 23(2).
http://dx.doi.org/10.1007/s00030-016-0368-z
---------- CHICAGO ----------
Ferreira, R., Pérez-Llanos, M. "Limit problems for a fractional p-laplacian as p → ∞" . Nonlinear Differential Equations and Applications 23, no. 2 (2016).
http://dx.doi.org/10.1007/s00030-016-0368-z
---------- MLA ----------
Ferreira, R., Pérez-Llanos, M. "Limit problems for a fractional p-laplacian as p → ∞" . Nonlinear Differential Equations and Applications, vol. 23, no. 2, 2016.
http://dx.doi.org/10.1007/s00030-016-0368-z
---------- VANCOUVER ----------
Ferreira, R., Pérez-Llanos, M. Limit problems for a fractional p-laplacian as p → ∞. Nonlinear Diff. Equ. Appl. 2016;23(2).
http://dx.doi.org/10.1007/s00030-016-0368-z