Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Type 1 diabetes (T1D) is linked to an 'encephalopathy' explained by some features common to the aging process, degenerative and functional disorders of the central nervous system. In the present study we describe a manifest hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in two different experimental mouse models of T1D including the pharmacological one induced by streptozotocin and the spontaneous NOD (nonobese diabetic mice). The high expression of hypothalamic hormones like oxytocin and vasopressin were part to this alteration, together with elevated adrenal glucocorticoids and prominent susceptibility to stress. In the hippocampus of diabetic animals a marked astrogliosis, often associated with neural damage, was present. Dentate gyrus neurogenesis was also affected by the disease: proliferation and differentiation measured by bromodeoxyuridine immunodetection were significantly reduced in both experimental models used. Several facts, including changes associated with chronic hyperglycemia, hyperstimulation of the HPA axis, increased levels of circulating glucocorticoids in combination with brain inflammation and low production of new neurons, contribute to emphasize the impact of diabetes on the central nervous system. Copyright © 2008 S. Karger AG.

Registro:

Documento: Artículo
Título:Brain alterations in autoimmune and pharmacological models of diabetes mellitus: Focus on hypothalamic-pituitary-adrenocortical axis disturbances
Autor:Beauquis, J.; Homo-Delarche, F.; Revsin, Y.; De Nicola, A.F.; Saravia, F.
Filiación:Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine, CONICET National Research Council, Buenos Aires, Argentina
Department of Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
CNRS 7059, Paris-Diderot University, Paris, France
Division of Medical Pharmacology, LACDR, Leiden University Medical Center, Leiden, Netherlands
Neuroendocrine Biochemistry, Institute of Biology and Experimental Medicine, UBA-CONICET, Obligado 2490, (1428) Buenos Aires, Argentina
Palabras clave:Astrocytes; Glucocorticoids; Hippocampus; Hypothalamic-pituitary-adrenal axis; Hypothalamus; Neurogenesis; Nonobese diabetic mice; Streptozotocin; Type 1 diabetes; Vasopressin; antidepressant agent; broxuridine; estrogen; glucocorticoid; glucose; oxytocin; streptozocin; vasopressin; astrocytosis; brain development; brain function; cell proliferation; cell survival; dentate gyrus; disease association; encephalitis; endocrine function; hippocampus; hormonal regulation; hormone action; hyperactivity; hyperglycemia; hypothalamus hypophysis adrenal system; insulin dependent diabetes mellitus; nervous system development; nonhuman; nonobese diabetic mouse; priority journal; review; Animals; Diabetes Mellitus, Type 1; Disease Models, Animal; Encephalitis; Endocrine System Diseases; Gliosis; Glucocorticoids; Hippocampus; Humans; Hypothalamo-Hypophyseal System; Pituitary-Adrenal System
Año:2008
Volumen:15
Número:1
Página de inicio:61
Página de fin:67
DOI: http://dx.doi.org/10.1159/000135625
Título revista:NeuroImmunoModulation
Título revista abreviado:NeuroImmunomodulation
ISSN:10217401
CODEN:NROIE
CAS:broxuridine, 59-14-3; glucose, 50-99-7, 84778-64-3; oxytocin, 50-56-6, 54577-94-5; streptozocin, 18883-66-4; vasopressin, 11000-17-2; Glucocorticoids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10217401_v15_n1_p61_Beauquis

Referencias:

  • Daneman, D., Type 1 diabetes (2006) Lancet, 367, pp. 847-858
  • Stumvoll, M., Goldstein, B.J., van Haeften, T.W., Type 2 diabetes: Principles of pathogenesis and therapy (2005) Lancet, 365, pp. 1333-1346
  • Tun, P.A., Nathan, D.M., Perlmuter, L.C., Cognitive and affective disorders in elderly diabetics (1990) Clin Geriatr Med, 6, pp. 731-746
  • Selvarajah, D., Tesfaye, S., Central nervous system involvement in diabetes mellitus (2006) Curr Diab Rep, 6, pp. 431-438
  • Anderson, R., Freedland, K., Clouse, R., Lustman, P., The prevalence of comorbid depression in adults with diabetes. A meta-analysis (2001) Diabetes Care, 24, pp. 1069-1078
  • Mankovsky, B., Cerebrovascular disorders in patients with diabetes mellitus (1997) J Diabetes Complications, 10, pp. 228-242
  • McCall, A., The impact of diabetes on the CNS (1992) Diabetes, 41, pp. 557-570
  • Ott, A., Stolk, R., van Harskamp, F., Pols, H., Hofman, A., Breteler, M., Diabetes mellitus and the risk of dementia: The Rotterdam study (1999) Neurology, 58, pp. 1937-1941
  • Brismar, T., Maurex, L., Cooray, G., Juntti-Berggren, L., Lindstrom, P., Ekberg, K., Predictors of cognitive impairment in type 1 diabetes (2007) Psychoneuroendocrinology, 32, pp. 1041-1051
  • Gispen, W., Biessels, G., Cognition and synaptic plasticity in diabetes mellitus (2000) Trends Neurosci, 23, pp. 542-549
  • Durant S, Coulaud J, Amrani A, el Hasnaoui A, Dardenne M, Homo-Delarche F: Effects of various environmental stress paradigms and adrenalectomy on the expression of autoimmune type 1 diabetes in the non-obese diabetic (NOD) mouse. J Autoimmun 1993;6:735-751; Saravia F, Durant S, Hasnaoui EA, Dardenne M, Homo-Delarche F: Environmental and experimental procedures leading to variations in the incidence of diabetic in the non-obese diabetic (NOD) mouse. Autoimmunity 1996;24:113-121; Biessels, G.J., Kamal, A., Ramakers, G.M., Urban, I.J., Spruijt, B.M., Erkelens, D.W., Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats (1996) Diabetes, 45, pp. 1259-1266
  • Li, Z., Zhang, W., Grunberger, G., Sima, A., Hippocampal neuronal apoptosis in type 1 diabetes (2002) Brain Res, 946, pp. 221-231
  • Magariños, A., McEwen, B., Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress (2000) Proc Natl Acad Sci USA, 97, pp. 11056-11061
  • Beauquis J, Roig P, Homo-Delarche F, De Nicola A, Saravia F: Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur J Neurosci 2006;23:1539-1546; Biessels, G.J., Gispen, W.H., The impact of diabetes on cognition: What can be learned from rodent models? (2005) Neurobiol Aging, 26 (SUPPL. 1), pp. 36-41
  • Bestetti, G., Rossi, G.L., Hypothalamic lesions in rats with long-term streptozotocin-induced diabetes mellitus. A semiquantitative light- and electron-microscopic study (1980) Acta Neuropathol, 52, pp. 119-127
  • Bach, J.F., Insulin-dependent diabetes mellitus as an autoimmune disease (1994) Endocr Rev, 15, pp. 516-542
  • Homo-Delarche, F., Beta-cell behaviour during the prediabetic stage. II. Non-insulin-dependent and insulin-dependent diabetes mellitus (1997) Diabetes Metab, 23, pp. 473-505
  • Amrani A, Durant S, Throsby M, Coulaud J, Dardenne M, Homo-Delarche F: Glucose homeostasis in the nonobese diabetic mouse at the prediabetic stage. Endocrinology 1998;139:1115-1124; Cornford, E.M., Hyman, S., Cornford, M.E., Clare-Salzler, M., Down-regulation of blood-brain glucose transport in the hyperglycemic nonobese diabetic mouse (1995) Neurochem Res, 20, pp. 869-873
  • Almqvist, E.G., Groop, L.C., Manhem, P.J., Hypothalamic-pituitary-adrenal response to different tests in type 1 diabetes mellitus (2001) Scand J Clin Lab Invest, 61, pp. 557-565
  • De Nicola, A.F., Magariños, A., Foglia, V.G., Bernardo Houssay Lecture: Neuroendocrine regulation in experimental diabetes (1991) Diabetes 1991, pp. 3-8. , Rifkin H, Colwell JA, Taylor SI eds, Amsterdam, Elsevier
  • Chan, O., Inouye, K., Riddell, M.C., Vranic, M., Matthews, S.G., Diabetes and the hypothalamo-pituitary-adrenal (HPA) axis (2003) Minerva Endocrinol, 28, pp. 87-102
  • Watts, L.M., Manchem, V.P., Leedom, T.A., Rivard, A.L., McKay, R.A., Bao, D., Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism (2005) Diabetes, 54, pp. 1846-1853
  • Homo-Delarche, F., Fitzpatrick, F., Christeff, N., Nunez, E.A., Bach, J.F., Dardenne, M., Sex steroids, glucocorticoids, stress and autoimmunity (1991) J Steroid Biochem Mol Biol, 40, pp. 619-637
  • Dheen, S.T., Tay, S.S., Wong, W.C., Arginine vasopressin- and oxytocin-like immunoreactive neurons in the hypothalamic paraventricular and supraoptic nuclei of streptozotocin-induced diabetic rats (1994) Arch Histol Cytol, 57, pp. 461-472
  • Saravia F, Gonzalez S, Roig P, Alves V, Homo-Delarche F, De Nicola AF: Diabetes increases the expression of hypothalamic neuropeptides in the spontaneous model of type 1 diabetes, the nonobese diabetic (NOD) mouse. Cell Mol Neurobiol 2001;21:15-27; Ludowyk, P.A., Hughes, W., Hugh, A., Willenborg, D.O., Rockett, K.A., Parish, C.R., Astrocytic hypertrophy: An important pathological feature of chronic experimental autoimmune encephalitis in aged rats (1993) J Neuroimmunol, 48, pp. 121-134
  • Nichols, N.R., Day, J.R., Laping, N.J., Johnson, S.A., Finch, C.E., GFAP mRNA increases with age in rat and human brain (1993) Neurobiol Aging, 14, pp. 421-429
  • Gonzalez Deniselle, M.C., Gonzalez, S., Piroli, G., Ferrini, M., Lima, A.E., De Nicola, A.F., Glucocorticoid receptors and actions in the spinal cord of the Wobbler mouse, a model for neurodegenerative diseases (1997) J Steroid Biochem Mol Biol, 60, pp. 205-213
  • Goss, J.R., Finch, C.E., Morgan, D.G., Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain (1991) Neurobiol Aging, 12, pp. 165-170
  • Saravia, F., Revsin, Y., Gonzalez-Deniselle, M.S., Roig, P., Lima, A., Homo-Delarche, F., Increased astrocyte reactivity in the hippocampus of murine models of type 1 diabetes: The nonobese diabetic (NOD) and streptozotocin-treated mice (2002) Brain Res, 957, pp. 345-353
  • de Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., Joels, M., Brain corticosteroid receptor balance in health and disease (1998) Endocr Rev, 19, pp. 269-301
  • Rapp, S.R., Espeland, M.A., Shumaker, S.A., Henderson, V.W., Brunner, R.L., Manson, J.E., Effect of estrogen plus progestin on global cognitive function in postmenopausal women: The Women's Health Initiative Memory Study: a randomized controlled trial (2003) JAMA, 289, pp. 2663-2672
  • Revsin Y, Saravia F, Roig P, Lima A, de Kloet ER, Homo-Delarche F, et al: Neuronal and astroglial alterations in the hippocampus of a mouse model for type 1 diabetes. Brain Res 2005;1038:22-31; Dorner, G., Hinz, G., Docke, F., Tonjes, R., Effects of psychotrophic drugs on brain differentiation in female rats (1977) Endokrinologie, 70, pp. 113-123
  • Homo-Delarche, F., Neuroendocrine immunoontogeny of the pathogenesis of autoimmune disease in the nonobese diabetic (NOD) mouse (2004) ILAR J, 45, pp. 237-258
  • Altman, J., Das, G.D., Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats (1965) J Comp Neurol, 124, pp. 319-335
  • Altman, J., Das, G.D., Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions (1966) J Comp Neurol, 126, pp. 337-389
  • Gross, C.G., Neurogenesis in the adult brain: Death of a dogma (2000) Nat Rev Neurosci, 1, pp. 67-73
  • Lie, D.C., Song, H., Colamarino, S.A., Ming, G.L., Gage, F.H., Neurogenesis in the adult brain: New strategies for central nervous system diseases (2004) Annu Rev Pharmacol Toxicol, 44, pp. 399-421
  • Ming, G.L., Song, H., Adult neurogenesis in the mammalian central nervous system (2005) Annu Rev Neurosci, 28, pp. 223-250
  • Laplagne, D.A., Esposito, M.S., Piatti, V.C., Morgenstern, N.A., Zhao, C., van Praag, H., Functional convergence of neurons generated in the developing and adult hippocampus (2006) PLoS Biol, 4, pp. e409
  • Abrous, D.N., Koehl, M., Le Moal, M., Adult neurogenesis: From precursors to network and physiology (2005) Physiol Rev, 85, pp. 523-569
  • Gould, E., McEwen, B., Tanapat, P., Galea, E., Fuchs, E., Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation (1997) J Neurosci, 17, pp. 2492-2498
  • Gould, E., Tanapat, P., Rydel, T., Hastings, N., Regulation of hippocampal neurogenesis in adulthood (2000) Biol Psychiatry, 48, pp. 715-720
  • Kempermann, G., Kuhn, H., Gage, F., Genetic influence on neurogenesis in the dentate gyrus of adult mice (1997) Proc Natl Acad Sci USA, 94, pp. 10409-10414
  • Kempermann, G., Regulation of adult hippocampal neurogenesis - implications for novel theories of major depression (2002) Bipolar Disord, 4, pp. 17-33
  • Lledo, P.M., Gheusi, G., Adult neurogenesis: From basic research to clinical applications (2006) Bull Acad Natl Med, 190, pp. 385-400
  • Beauquis, J., Saravia, F., Coulaud, J., Roig, P., Dardenne, M., Homo-Delarche, F., Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse (2008) Exp Neurol, 210, pp. 359-367
  • Jackson-Guilford, J., Leander, J., Nisenbaum, L., The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus (2000) Neurosci Lett, 293, pp. 91-94
  • Saravia F, Revsin Y, Lux-Lantos V, Beauquis J, Homo-Delarche F, De Nicola AF: Oestradiol restores cell proliferation in dentate gyrus and subventricular zone of streptozotocin-diabetic mice. J Neuroendocrinol 2004;16:704-710; Suh, S.W., Fan, Y., Hong, S.M., Liu, Z., Matsumori, Y., Weinstein, P.R., Hypoglycemia induces transient neurogenesis and subsequent progenitor cell loss in the rat hippocampus (2005) Diabetes, 54, pp. 500-509
  • Yamada, K., Rensing, N., Izumi, Y., De Erausquin, G., Gazit, V., Dorsey, D., Repetitive hypoglycemia in young rats impairs hippocampal long-term potentiation (2004) Pediatr Res, 55, pp. 372-379
  • McEwen, B., Magariños, A., Reagan, L., Studies of hormone action in the hippocampal formation. Possible relevance to depression and diabetes (2002) J Psychosom Res, 53, pp. 883-890
  • Bakker, J.M., van Bel, F., Heijnen, C.J., Neonatal glucocorticoids and the developing brain: Short-term treatment with life-long consequences? (2001) Trends Neurosci, 24, pp. 649-653
  • Gould, E., Cameron, H.A., Regulation of neuronal birth, migration and death in the rat dentate gyrus (1996) Dev Neurosci, 18, pp. 22-35
  • Meaney, M.J., Aitken, D.H., van Berkel, C., Bhatnagar, S., Sapolsky, R.M., Effect of neonatal handling on age-related impairments associated with the hippocampus (1988) Science, 239, pp. 766-768
  • Matthews, S.G., Antenatal glucocorticoids and programming of the developing CNS (2000) Pediatr Res, 47, pp. 291-300
  • Welberg, L.A., Seckl, J.R., Prenatal stress, glucocorticoids and the programming of the brain (2001) J Neuroendocrinol, 13, pp. 113-128
  • Harizi H, Homo-Delarche F, Amrani A, Coulaud J, Mormede P: Marked genetic differences in the regulation of blood glucose under immune and restraint stress in mice reveals a wide range of corticosensitivity. J Neuroimmunol 2007;189:59-68; Stranahan, A.M., Arumugam, T.V., Cutler, R.G., Lee, K., Egan, J.M., Mattson, M.P., Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons (2008) Nat Neurosci, 11, pp. 309-317
  • Sheffield, L.G., Berman, N.E., Microglial expression of MHC class II increases in normal aging of nonhuman primates (1998) Neurobiol Aging, 19, pp. 47-55
  • Ekdahl, C.T., Claasen, J.H., Bonde, S., Kokaia, Z., Lindvall, O., Inflammation is detrimental for neurogenesis in adult brain (2003) Proc Natl Acad Sci USA, 100, pp. 13632-13637
  • Monje, M.L., Toda, H., Palmer, T.D., Inflammatory blockade restores adult hippocampal neurogenesis (2003) Science, 302, pp. 1760-1765
  • Terao, A., Apte-Deshpande, A., Dousman, L., Morairty, S., Eynon, B.P., Kilduff, T.S., Immune response gene expression increases in the aging murine hippocampus (2002) J Neuroimmunol, 132, pp. 99-112
  • Ichikawa, M., Koh, C.S., Inaba, Y., Seki, C., Inoue, A., Itoh, M., IgG subclass switching is associated with the severity of experimental autoimmune encephalomyelitis induced with myelin oligodendrocyte glycoprotein peptide in NOD mice (1999) Cell Immunol, 191, pp. 97-104
  • Bluthe R, Jafarian-Tehrani M, Michaud B, Haour F, Dantzer R, Homo-Delarche F: Increased sensitivity of prediabetic nonobese diabetic mouse to the behavioral effects of IL-1. Brain Behav Immun 1999;13:303-314; Hayes, N.L., Nowakowski, R.S., Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice (2002) Brain Res Dev Brain Res, 134, pp. 77-85
  • Bluthe, R.M., Michaud, B., Delhaye-Bouchaud, N., Mariani, J., Dantzer, R., Hypersensitivity of lurcher mutant mice to the depressing effects of lipopolysaccharide and interleukin-1 on behaviour (1997) Neuroreport, 8, pp. 1119-1122
  • Kempermann, G., Jessberger, S., Steiner, B., Kronenberg, G., Milestones of neuronal development in the adult hippocampus (2004) Trends Neurosci, 27, pp. 447-452

Citas:

---------- APA ----------
Beauquis, J., Homo-Delarche, F., Revsin, Y., De Nicola, A.F. & Saravia, F. (2008) . Brain alterations in autoimmune and pharmacological models of diabetes mellitus: Focus on hypothalamic-pituitary-adrenocortical axis disturbances. NeuroImmunoModulation, 15(1), 61-67.
http://dx.doi.org/10.1159/000135625
---------- CHICAGO ----------
Beauquis, J., Homo-Delarche, F., Revsin, Y., De Nicola, A.F., Saravia, F. "Brain alterations in autoimmune and pharmacological models of diabetes mellitus: Focus on hypothalamic-pituitary-adrenocortical axis disturbances" . NeuroImmunoModulation 15, no. 1 (2008) : 61-67.
http://dx.doi.org/10.1159/000135625
---------- MLA ----------
Beauquis, J., Homo-Delarche, F., Revsin, Y., De Nicola, A.F., Saravia, F. "Brain alterations in autoimmune and pharmacological models of diabetes mellitus: Focus on hypothalamic-pituitary-adrenocortical axis disturbances" . NeuroImmunoModulation, vol. 15, no. 1, 2008, pp. 61-67.
http://dx.doi.org/10.1159/000135625
---------- VANCOUVER ----------
Beauquis, J., Homo-Delarche, F., Revsin, Y., De Nicola, A.F., Saravia, F. Brain alterations in autoimmune and pharmacological models of diabetes mellitus: Focus on hypothalamic-pituitary-adrenocortical axis disturbances. NeuroImmunomodulation. 2008;15(1):61-67.
http://dx.doi.org/10.1159/000135625