Artículo

Sacca, P.A.; Creydt, V.P.; Choi, H.; Mazza, O.N.; Fletcher, S.J.; Vallone, V.B.F.; Scorticati, C.; Chasseing, N.A.; Calvo, J.C. "Human periprostatic adipose tissue: Its influence on prostate cancer cells" (2012) Cellular Physiology and Biochemistry. 30(1):113-122
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background/Aims: Adipose microenvironment is involved in signaling pathways that influence prostate cancer (PCa) progression. However, the role of human periprostatic adipose tissue (PPAT) from patients with benign prostatic hyperplasia (BPH) has not been studied and compared to that of PPAT from PCa patients. The aim of this paper was to investigate the influence of factors derived from both PPATs on the behavior of androgen-dependent and castration resistant PCa cells. Methods: PPAT conditioned media (CM) were obtained from tissue samples from patients with clinically primary PCa (TPPAT) or BPH (BPPAT). Cell adhesion, proliferation, migration and metalloproteinase expression were evaluated following exposure of LNCaP (androgen dependent) and PC3 (androgen independent) prostate cancer cell lines to BPPAT or TPPAT CM. Results: Proliferation or motility of LNCaP or PC3 cells were not significantly affected by TPPAT or BPPAT CM. The number of LNCaP but not PC3 cells attached to components of TPPAT CM significantly decreased compared to cells attached to BPPAT CM. PPAT produced and released pro-MMP-9. Zymograms demonstrated that TPPAT CM induced a significant increase in pro-MMP-9 activity compared to BPPAT CM in LNCaP cells but not in PC3 cells. Conclusions: We conclude that TPPAT released factors, such as pro-MMP-9, could induce the invasive capacity of LNCaP cells and speculate that PPAT derived factors could, in the early stages of prostate cancer, modulate disease progression. © 2012 S. Karger AG, Basel.

Registro:

Documento: Artículo
Título:Human periprostatic adipose tissue: Its influence on prostate cancer cells
Autor:Sacca, P.A.; Creydt, V.P.; Choi, H.; Mazza, O.N.; Fletcher, S.J.; Vallone, V.B.F.; Scorticati, C.; Chasseing, N.A.; Calvo, J.C.
Filiación:Instituto de Biologa y Medicina Experimental (IBYME)-CONICET, Vuelta de Obligado 2490, 1428 Ciudad de Buenos Aires, Argentina
Institute for Regenerative Medicine, Texas A and M Health Science Center, Temple, TX, United States
Hospital de Clnicas Jos de San Martn-Ctedra de Urologa, Facultad de Medicina, Universidad de Buenos Aires, Argentina
Departamento de Qumica Biolgica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Adipose tissue; Metalloproteinases; Microenvironment; Periprostatic adipose tissue; Periprostatic fat; Prostate cancer; androgen; gelatinase B; adipose tissue; adult; aged; article; cancer cell; cancer surgery; castration resistant prostate cancer; cell adhesion; cell migration; cell motility; cell proliferation; cell strain LNCaP; controlled study; enzyme activity; human; human cell; human tissue; male; periprostatic adipose tissue; priority journal; prostate hypertrophy; prostatectomy; protein expression; zymography; Aged; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Transformation, Neoplastic; Culture Media, Conditioned; Humans; Intra-Abdominal Fat; Male; Matrix Metalloproteinase 9; Middle Aged; Neoplasms, Hormone-Dependent; Prostate; Prostatic Hyperplasia; Prostatic Neoplasms; Tumor Microenvironment
Año:2012
Volumen:30
Número:1
Página de inicio:113
Página de fin:122
DOI: http://dx.doi.org/10.1159/000339051
Título revista:Cellular Physiology and Biochemistry
Título revista abreviado:Cell. Physiol. Biochem.
ISSN:10158987
CODEN:CEPBE
CAS:gelatinase B, 146480-36-6; Culture Media, Conditioned; Matrix Metalloproteinase 9, 3.4.24.35
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10158987_v30_n1_p113_Sacca

Referencias:

  • Hong, H., Koch, M.O., Foster, R.S., Bihrle, R., Gardner, T.A., Fyffe, J., Ulbright, T.M., Cheng, L., Anatomic distribution of periprostatic adipose tissue: A mapping study of 100 radical prostatectomy specimens (2003) Cancer, 97, pp. 639-1643
  • Kiyoshima, K., Yokomizo, A., Yoshida, T., Tomita, K., Yonemasu, H., Nakamura, M., Oda, Y., Hasegawa, Y., Anatomical features of periprostatic tissue and its surroundings: A histological analysis of 79 radical retropubic prostatectomy specimens (2004) Japanese Journal of Clinical Oncology, 34 (8), pp. 463-468. , DOI 10.1093/jjco/hyh078
  • Van Roermund, J.G., Bol, G.H., Witjes, J.A., Ruud Bosch, J.L., Kiemeney, L.A., Van, V.M., Periprostatic fat measured on computed tomography as a marker for prostate cancer aggressiveness (2010) World J Urol, 28, pp. 699-704
  • Bihindi, B., Trottier, G., Elharram, M., Fernandes, K.A., Lockwood, G., Toi, A., Hersey, K.M., Fleshner, N.E., Measurement of peri-prostatic fat thickness using transrectal ultrasonography (TRUS): A new risk factor for prostate cancer (2012) BJU Int, , DOI: 10.1111/J.1464-410X.2012.10957.x
  • Alvarez-Llamas, G., Szalowska, E., De Vries, M.P., Weening, D., Landman, K., Hoek, A., Wolffenbuttel, B.H.R., Vonk, R.J., Characterization of the human visceral adipose tissue secretome (2007) Molecular and Cellular Proteomics, 6 (4), pp. 589-600. , DOI 10.1074/mcp.M600265-MCP200
  • Baillargeon, J., Rose, D.P., Obesity, adipokines, and prostate cancer (review) (2006) Int J Oncol, 28, pp. 737-745
  • Mistry, T., Digby, J.E., Desai, K.M., Randeva, H.S., Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression (2008) BJU International, 101 (10), pp. 1317-1322. , DOI 10.1111/j.1464-410X.2008.07512.x
  • Finley, D.S., Calvert, V.S., Inokuchi, J., Lau, A., Narula, N., Petricoin, E.F., Zaldivar, F., Ornstein, D.K., Periprostatic adipose tissue as a modulator of prostate cancer aggressiveness (2009) J Urol, 182, pp. 1621-1627
  • Ribeiro, R.J.T., Monteiro, C.P.D., Vfpm, C., Azevedo, A.S.M., Oliveira, M.J., Monteiro, R., Fraga, A.M., Medeiros, R.M., Tumor cell-educated periprostatic adipose tissue acquires an aggressive cancer-promoting secretory profile (2012) Cell Physiol Biochem, 29, pp. 233-240
  • Niu, Y.N., Xia, S.J., Stroma-epithelium crosstalk in prostate cancer (2009) Asian J Androl, 11, pp. 28-35
  • Karlou, M., Tzelepi, V., Efstathiou, E., Therapeutic targeting of the prostate cancer microenvironment (2010) Nat Rev Urol, 7, pp. 494-509
  • Chakraborti, S., Mandal, M., Das, S., Mandal, A., Chakraborti, T., Regulation of matrix metalloproteinases: An overview (2003) Mol Cell Biochem, 253, pp. 269-285
  • Butler, G.S., Overall, C.M., Updated biological roles for matrix metalloproteinases and new "intracellular" Substrates revealed by degradomics (2009) Biochemistry, 48, pp. 10830-10845
  • Hadler-Olsen, E., Fadnes, B., Sylte, I., Uhlin-Hansen, L., Winberg, J.O., Regulation of matrix metalloproteinase activity in health and disease 1 (2011) FEBS J, 278, pp. 28-45
  • Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P., Zucker, S., Membrane type 1 matrix metalloproteinase induces epithelial-to- mesenchymal transition in prostate cancer (2008) J Biol Chem, 283, pp. 6232-6240
  • Dozmorov, M.G., Hurst, R.E., Culkin, D.J., Kropp, B.P., Frank, M.B., Osban, J., Penning, T.M., Lin, H.K., Unique patterns of molecular profiling between human prostate cancer LNCap and PC-3 cells (2009) Prostate, 69, pp. 1077-1090
  • Horoszewicz, J.S., Leong, S.S., Chu, T.M., Wajsman, Z.L., Friedman, M., Papsidero, L., Kim, U., Sandberg, A.A., The LNCaP cell line: A new model for studies on human prostatic carcinoma (1980) Prog Clin Biol Res, 37, pp. 115-132
  • Horvath, L.G., Lelliott, J.E., Kench, J.G., Lee, C.-S., Williams, E.D., Saunders, D.N., Grygiel, J.J., Henshall, S.M., Secreted frizzled-related protein 4 inhibits proliferation and metastatic potential in prostate cancer (2007) Prostate, 67 (10), pp. 1081-1090. , DOI 10.1002/pros.20607
  • Killilea, A.N., Downing, K.H., Killilea, D.W., Zinc deficiency reduces paclitaxel efficacy in LNCaP prostate cancer cells (2007) Cancer Letters, 258 (1), pp. 70-79. , DOI 10.1016/j.canlet.2007.08.010, PII S0304383507003837
  • Sarveswaran, S., Liroff, J., Zhou, Z., Nikitin, A.Y., Ghosh, J., Selenite triggers rapid transcriptional activation of p53, and p53-mediated apoptosis in prostate cancer cells: Implication for the treatment of early-stage prostate cancer (2010) Int J Oncol, 36, pp. 1419-1428
  • Retta, S.F., Ternullo, M., Tarone, G., Adhesion to matrix proteins (1999) Adhesion Protein Protocols, pp. 125-130. , Dejana E, Corada M (eds) Totowa, N J , Humana Press INC
  • Sakko, A.J., Ricciardelli, C., Mayne, K., Suwiwat, S., LeBaron, R.G., Marshall, V.R., Tilley, W.D., Horsfall, D.J., Modulation of prostate cancer cell attachment to matrix by versican (2003) Cancer Research, 63 (16), pp. 4786-4791
  • Pucci-Minafra, I., Minafra, S., La Rocca, G., Barranca, M., Fontana, S., Alaimo, G., Okada, Y., Zymographic analysis of circulating and tissue forms of colon carcinoma gelatinase A (MMP-2) and B (MMP-9) separated by mono- and two-dimensional electrophoresis (2001) Matrix Biology, 20 (7), pp. 419-427. , DOI 10.1016/S0945-053X(01)00146-9, PII S0945053X01001469
  • Olson, M.W., Bernardo, M.M., Pietila, M., Gervasi, D.C., Toth, M., Kotra, L.P., Massova, I., Fridman, R., Characterization of the monomeric and dimeric forms of latent and active matrix metalloproteinase-9: Differential rates for activation by stromelysin 1 (2000) Journal of Biological Chemistry, 275 (4), pp. 2661-2668. , DOI 10.1074/jbc.275.4.2661
  • Chung, L.W.K., Baseman, A., Assikis, V., Zhau, H.E., Molecular insights into prostate cancer progression: The missing link of tumor microenvironment (2005) Journal of Urology, 173 (1), pp. 10-20. , DOI 10.1097/01.ju.0000141582.15218.10
  • Escaff, S., Fernandez, J.M., Gonzalez, L.O., Suarez, A., Gonzalez-Reyes, S., Gonzalez, J.M., Vizoso, F.J., Study of matrix metalloproteinases and their inhibitors in prostate cancer (2010) Br J Cancer, 102, pp. 922-929
  • Dong, Z., Nemeth, J.A., Cher, M.L., Palmer, K.C., Bright, R.C., Fridman, R., Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells (2001) International Journal of Cancer, 93 (4), pp. 507-515. , DOI 10.1002/ijc.1358
  • Chaldakov, G.N., Beltowsky, J., Ghenev, P.I., Fiore, M., Panayotov, P., Rancic, G., Aloe, L., Adipoparacrinology-vascular periadventitial adipose tissue (tunica adiposa) as an example (2012) Cell Biol Int, 36, pp. 327-330

Citas:

---------- APA ----------
Sacca, P.A., Creydt, V.P., Choi, H., Mazza, O.N., Fletcher, S.J., Vallone, V.B.F., Scorticati, C.,..., Calvo, J.C. (2012) . Human periprostatic adipose tissue: Its influence on prostate cancer cells. Cellular Physiology and Biochemistry, 30(1), 113-122.
http://dx.doi.org/10.1159/000339051
---------- CHICAGO ----------
Sacca, P.A., Creydt, V.P., Choi, H., Mazza, O.N., Fletcher, S.J., Vallone, V.B.F., et al. "Human periprostatic adipose tissue: Its influence on prostate cancer cells" . Cellular Physiology and Biochemistry 30, no. 1 (2012) : 113-122.
http://dx.doi.org/10.1159/000339051
---------- MLA ----------
Sacca, P.A., Creydt, V.P., Choi, H., Mazza, O.N., Fletcher, S.J., Vallone, V.B.F., et al. "Human periprostatic adipose tissue: Its influence on prostate cancer cells" . Cellular Physiology and Biochemistry, vol. 30, no. 1, 2012, pp. 113-122.
http://dx.doi.org/10.1159/000339051
---------- VANCOUVER ----------
Sacca, P.A., Creydt, V.P., Choi, H., Mazza, O.N., Fletcher, S.J., Vallone, V.B.F., et al. Human periprostatic adipose tissue: Its influence on prostate cancer cells. Cell. Physiol. Biochem. 2012;30(1):113-122.
http://dx.doi.org/10.1159/000339051