Artículo

Venosa, G.D.; Hermida, L.; Fukuda, H.; Defain, M.V.; Rodriguez, L.; Mamone, L.; MacRobert, A.; Casas, A.; Batlle, A. "Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy" (2009) Journal of Photochemistry and Photobiology B: Biology. 96(2):152-158
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

ALA administration has been used to induce the endogenous photosensitiser Protoporphyrin IX for photodynamic therapy (PDT) of tumours. However, the hydrophilic nature of ALA limits its ability to penetrate through skin restricting the use of ALA-PDT to superficial diseases. Lipophilic derivatives of ALA such as ALA Undecanoyl ester (Und-ALA) were designed to have better diffusing properties. However, Und-ALA, applied topically on the skin over the tumour, induced low porphyrin content. To improve Und-ALA efficacy we tested the efficacy of Und-ALA as porphyrin inducer, delivered in phosphatidylcholine and phosphatidylglycerol (PC-PG) or phosphatidylcholine and phosphatidic acid (PC-PA) liposomal formulations. Entrapment of Und-ALA into PC-PA or PC-PG liposomes resulted in a dramatic impairment of toxicity in the mammary tumour LM3 cells. However, liposomal Und-ALA induced lower intracellular porphyrin content compared to free ALA, although total porphyrins content (intracellular + media) from free Und-ALA resulted equal compared to liposomal Und-ALA, due to induction of porphyrins release induced by the latter. Topical administration of Und-ALA in PC-PG or PC-PA liposomes over the skin of LM3 subcutaneously injected mice, induced equal amount of tumour porphyrins as compared to free Und-ALA. The kinetics of porphyrins synthesis from Und-ALA is similar for free and liposomal formulations both in vivo and in vitro, showing that release of Und-ALA from liposomes is not gradual and suggesting that liposome membranes either fuses or binds to the cell membranes. To sum up, the incorporation of Und-ALA into liposomes of PC-PA or PC-PG composition does not improve the rate of porphyrin synthesis either in vitro or in vivo, due to a massive release of extracellular porphyrins and a poor cytoplasmatic release of the liposome content. The design of new liposome compositions either favouring endocytosis or coated with natural polymers to prevent Und-ALA interaction with cellular membrane are desired to overcome intracellular porphyrin release after long-chained ALA esters treatment. © 2009 Elsevier B.V.

Registro:

Documento: Artículo
Título:Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy
Autor:Venosa, G.D.; Hermida, L.; Fukuda, H.; Defain, M.V.; Rodriguez, L.; Mamone, L.; MacRobert, A.; Casas, A.; Batlle, A.
Filiación:Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET, Hospital de Clínicas José de San Martín, Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires, CP1120AAF, Argentina
Centro de Investigación y Desarrollo en Química, Instituto Nacional de Tecnología Industrial (INTI), Buenos Aires, Argentina
Departmento de Química Biológica, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
National Medical Laser Centre, Royal Free and University College Medical School, University College London, London, United Kingdom
Palabras clave:ALA; ALA esters; Aminolevulinic acid; Liposomes; PDT; Photodynamic therapy; aminolevulinic acid; aminolevulinic acid undecanoyl ester; liposome; phosphatidic acid; phosphatidylcholine; phosphatidylglycerol; polymer; porphyrin; porphyrin derivative; unclassified drug; animal cell; animal experiment; animal model; animal tissue; article; breast tumor; cell membrane; controlled study; drug cytotoxicity; drug efficacy; endocytosis; hydrophilicity; lipophilicity; male; membrane binding; mouse; nonhuman; photodynamic therapy; priority journal; skin tumor; tumor cell; Administration, Topical; Aminolevulinic Acid; Animals; Cell Line, Tumor; Ethers; Injections, Subcutaneous; Liposomes; Male; Mice; Photochemotherapy; Photosensitizing Agents; Porphyrins; Mus
Año:2009
Volumen:96
Número:2
Página de inicio:152
Página de fin:158
DOI: http://dx.doi.org/10.1016/j.jphotobiol.2009.06.001
Título revista:Journal of Photochemistry and Photobiology B: Biology
Título revista abreviado:J. Photochem. Photobiol. B Biol.
ISSN:10111344
CODEN:JPPBE
CAS:aminolevulinic acid, 106-60-5; phosphatidylcholine, 55128-59-1, 8002-43-5; porphyrin, 24869-67-8; Aminolevulinic Acid, 106-60-5; Ethers; Liposomes; Photosensitizing Agents; Porphyrins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10111344_v96_n2_p152_Venosa

Referencias:

  • Martin, D., Porphyrins (1983) Harpeŕs Review of Biochemistry, pp. 317-333. , Martin D., Mayes P., and Rodwel V. (Eds), Los Altos, CA, Lange Medical Publications
  • Van Steveninck, J., Tijssen, K., Boegheim, J., Van Der Zee, J., Dubbleman, T., Photodynamic generation of hydroxyl radicals by haematoporphyrin derivative and light (1986) Photochem. Photobiol., 44, pp. 711-716
  • Kennedy, J., Pottier, R., Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy (1992) J. Photochem. Photobiol. B, 14, pp. 275-292
  • Marti, A., Lange, N., van den Bergh, H., Sedmera, D., Jichlinski, P., Kucera, P., Optimisation of the formation and distribution of protoporphyrin IX in the urothelium: an in vitro approach (1999) J. Urol., 162, pp. 546-552
  • Lange, N., Jichinlinski, P., Zellweger, M., Forrer, M., Marti, A., Guillou, L., Kuchera, P., van den Bergh, H., Photodetection of early human bladder cancer based on the fluorescence of 5-aminolevulinic acid hexylester-induced protoporhyrin IX: a pilot study (1999) Br. J. Cancer, 80, pp. 185-193
  • Kloek, J., Beijersbergen, G., Henegouwen, v., Prodrugs of 5-aminolevulinic acid for photodynamic therapy (1996) Photochem. Photobiol., 64, pp. 994-1000
  • Kloek, J., Akkermans, W., Beijersbergen, G., Henegouwen, v., Derivatives of 5-Aminolevulinic acid for Photodynamic therapy: enzymatic conversion into protoporphyrin (1998) Photochem. Photobiol., 67, pp. 150-154
  • Gaullier, J., Berg, K., Peng, Q., Anholt, H., Selbo, P., Ma, L., Moan, J., Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture (1997) Cancer Res., 57, pp. 1481-1486
  • Berger, Y., Greppi, A., Siri, O., Neier, R., Jullierat-Jeanneret, L., Ethylene glycol and amino acid derivatives of 5-aminolevulinic acid as new photosensitizing precursors of Protoporphyrin IX (2000) J. Med. Chem., 43, pp. 4738-4746
  • Uehlinger, P., Zellweger, M., Wagnières, G., Juillerat-Jeanneret, L., H. van den Bergh, N. Lange, 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells (2000) J. Photochem. Photobiol. B Biol., 54, pp. 72-80
  • Casas, A., Fukuda, H., Di Venosa, G., A battle photosensitisation and mechanism of cytotoxicity induced by the use of ALA derivatives in photodynamic therapy (2001) Br. J. Cancer, 85, pp. 279-284
  • Casas, A., Batlle, A., Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy (2006) Curr. Med. Chem., 13, pp. 1157-1168
  • Di Venosa, G., Batlle, A., Fukuda, H., Macrobert, A., Casas, A., Distribution of 5-aminolevulinic acid derivatives and induced porphyrin kinetics in mice tissues (2006) Cancer Chemother. Pharmacol., 58, pp. 478-486
  • Rodriguez, L., Batlle, A., Di Venosa, G., Battah, S., Dobbin, P., Macrobert, A., Casas, A., Mechanisms of 5-aminolevulinic acid ester uptake in mammalian cells (2006) Br. J. Pharmacol., 147, pp. 823-825
  • Perotti, C., Fukuda, H., Di Venosa, G., MacRobert, A., Batlle, A., A Casas A Porphyrins synthesis from ALA derivatives for photodynamic therapy In vitro and in vivo studies (2004) Br. J. Cancer, 90, pp. 1660-1665
  • Pass, H., Photodynamic therapy in oncology: mechanisms and clinical use (1993) J. Natl. Cancer Inst., 85, pp. 443-456
  • Derycke, A.S., Witte, P.A., Liposomes for photodynamic therapy (2004) Adv. Drug Deliv. Rev., 56, pp. 17-30
  • Konan, Y.N., Gurny, R., Allemann, E., State of the art in the delivery of photosensitizers for photodynamic therapy (2002) J. Photochem. Photobiol. B., 66, pp. 89-106
  • Reddi, E., Role of delivery vehicles for photosensitizers in the photodynamic therapy of tumours (1997) J. Photochem. Photobiol. B., 37, pp. 189-195
  • Fukuda, H., Paredes, S., Batlle, A.M., Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms (1989) Drug Des. Deliv., 5, pp. 133-139
  • Casas, A., Perotti, C., Saccoliti, M., Sacca, P., Fukuda, H., Batlle, A.M., ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures (2002) Br. J. Cancer, 86, pp. 837-842
  • Fukuda, H., Paredes, S., Batlle, A.M., Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid (1992) Comp. Biochem. Physiol. B., 102, pp. 433-436
  • Casas, A., Fukuda, H., Di Venosa, G., Batlle, A.M., The influence of the vehicle on the synthesis of porphyrins after topical application of 5-aminolaevulinic acid Implications in cutaneous photodynamic sensitization (2000) Br. J. Dermatol., 143, pp. 564-572
  • Pierre, M.B., Tedesco, A.C., Marchetti, J.M., Bentley, M.V., Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study (2001) BMC Dermatol., 1, p. 5
  • Kosobe, T., Moriyama, E., Tokuoka, Y., Kawashima, N., Size and surface charge effect of 5-aminolevulinic Acid-containing liposomes on photodynamic therapy for cultivated cancer cells (2005) Drug Dev. Ind. Pharm., 31, pp. 623-629
  • Han, I., Jun, M., Kim, S., Kim, M., Kim, J., Expression and intensity of protoporphyrin IX induced by liposomal 5-aminolevulinic acid in rat pilosebaceous unit throughout hair cycle (2005) Arch. Dermatol. Res., 297, pp. 210-217
  • Di Venosa, G., Hermida, L., Batlle, A., Fukuda, H., Defain, M.V., Mamone, L., Rodriguez, L., Casas, A., Characterisation of liposomes containing aminolevulinic acid and derived esters (2008) J. Photochem. Photobiol. B Biol., 92, pp. 1-9
  • Takeya, H., Preparation of 5-aminolevulinic acid alkyl ethers as herbicides (1992) Chem. Abs., 116, pp. 189633 m
  • Fry, D., White, C., Goldman, D., Rapid separation of low molecular weight solutes from liposomes without dilution (1978) Anal. Biochem., 90, pp. 809-815
  • Stewart, J., Colorimetric determination of phospholipids with ammonium ferrothiocyanate (1959) Anal. Biochem., 10, pp. 10-14
  • Werbajh, S., Urtereger, A.J., Puricelli, L.I., de Lustig, E.S., Bal de Kier Joffe, E., Kornblihtt, A.R., Downregulation of fibronectin transcription in highly metastatic adenocarcinoma cells (1998) FEBS Lett., 440, pp. 277-281
  • Denizot, F., Lang, R., Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability (1986) J. Immunol. Methods, 89, pp. 271-277
  • Workman, P., Balmain, A., Hickman, J., United Kingdom Co-ordinating Committee on Cancer Research (UKCCCR) guidelines for the welfare of animals in experimental neoplasia (1998) Br. J. Cancer, 77, pp. 1-10. , (second Edition)
  • Van den Akker, J., Iani, V., Star, W., Sterenborg, H., Moan, J., Topical application of 5-aminolevulinic acid hexyl ester and 5-aminolevulinic acid to normal nude mouse skin: differences in Protoporphyrin IX fluorescence kinetics and the role of the stratum corneum (2000) Photochem. Photobiol., 72, pp. 681-689
  • Casas, A., Batlle, A.M., Butler, A.R., Robertson, D., Brown, E.H., MacRobert, A., Riley, P.A., Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures (1999) Br. J. Cancer, 80, pp. 1525-1532
  • Di Venosa, G., Fukuda, H., Perotti, C., Batlle, A., Casas, A., A simple method for separating ALA from ALA derivatives using ionic exchange chromatography (2004) J. Photochem. Photobiol. B, 75, pp. 157-163
  • Mauzerall, M., Granick, S., The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine (1956) J. Biol. Chem., 219, pp. 435-437
  • El Maghraby, G., Barry, B., Williams, A., Liposomes and skin: from drug delivery to model membranes (2008) Eur. J. Pharm. Sci., 34, pp. 203-222
  • Har-el, Y., Kato, Y., Intracellular delivery of nanocarriers for cancer therapy (2007) Curr. Nanosci., 3, pp. 329-338

Citas:

---------- APA ----------
Venosa, G.D., Hermida, L., Fukuda, H., Defain, M.V., Rodriguez, L., Mamone, L., MacRobert, A.,..., Batlle, A. (2009) . Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 96(2), 152-158.
http://dx.doi.org/10.1016/j.jphotobiol.2009.06.001
---------- CHICAGO ----------
Venosa, G.D., Hermida, L., Fukuda, H., Defain, M.V., Rodriguez, L., Mamone, L., et al. "Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy" . Journal of Photochemistry and Photobiology B: Biology 96, no. 2 (2009) : 152-158.
http://dx.doi.org/10.1016/j.jphotobiol.2009.06.001
---------- MLA ----------
Venosa, G.D., Hermida, L., Fukuda, H., Defain, M.V., Rodriguez, L., Mamone, L., et al. "Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy" . Journal of Photochemistry and Photobiology B: Biology, vol. 96, no. 2, 2009, pp. 152-158.
http://dx.doi.org/10.1016/j.jphotobiol.2009.06.001
---------- VANCOUVER ----------
Venosa, G.D., Hermida, L., Fukuda, H., Defain, M.V., Rodriguez, L., Mamone, L., et al. Comparation of liposomal formulations of ALA Undecanoyl ester for its use in photodynamic therapy. J. Photochem. Photobiol. B Biol. 2009;96(2):152-158.
http://dx.doi.org/10.1016/j.jphotobiol.2009.06.001