Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A method has been developed for the quantitative determination of fluorescence resonance energy transfer (FRET) based on the modulation of donor fluorescence upon the reversible photoconversion of a photochromic acceptor. A model system was devised, consisting of Lucifer Yellow cadaverine (LYC, donor) conjugated to the photochromic molecule, 6-nitroBIPS (1′,3′-dihydro-1′-(2-carboxyethyl)- Near-ultraviolet irradiation catalyzes the conversion of the colorless spiropyran (SP) to the colored merocyanine (MC) form of 6-nitroBIPS. Only the MC form absorbs at the emission wavelengths of the donor, thereby potentiating FRET, as demonstrated by quenching of the donor. Subsequent irradiation in the visible MC absorption band reverts 6-nitroBIPS to the SP form and FRET is inactivated. The acceptor exhibited high photostability under repeated cycles of alternating UV-Vis irradiation. In this model system, the intramolecular FRET efficiency was close to 100%. The observed maximal donor quenching of 34± 3% was indicative of an equilibrium determined by the high quantum efficiency of forward conversion (SP → MC) induced by near-UV irradiation and a low but finite quantum efficiency of the back reaction resulting from excitation of the MC form directly as well as indirectly (by FRET via the donor). A quantitative formalism for the photokinetic scheme was developed. Photochromic FRET (pcFRET) permits repeated, quantitative, and non-destructive FRET determinations for arbitrary relative concentrations of donor and acceptor and thus offers great potential for monitoring dynamic molecular interactions in living cells over extended observation times by fluorescence microscopy. © 2002 Elsevier Science B.V. All rights reserved.

Registro:

Documento: Artículo
Título:A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET)
Autor:Song, L.; Jares-Erijman, E.A.; Jovin, T.M.
Filiación:Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
Departmento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria-Pabellón II, 1428 Buenos Aires, Argentina
Palabras clave:Fluorescence microscopy; Merocyanine; pcFRET; Photochromism; Spiropyran; 1',3' dihydro 1' (2 carboxyethyl) 3,3' dimethyl 6 nitrospiro[2h 1 benzopyran 2,2'(2h) indoline]; cadaverine; fluorescent dye; lucifer yellow; merocyanine; spiropyran; unclassified drug; absorption; article; catalysis; concentration (parameters); conjugation; controlled study; donor; energy transfer; excitation; fluorescence; fluorescence microscopy; light; model; molecular interaction; molecular stability; photochemistry; quantitative analysis; ultraviolet radiation
Año:2002
Volumen:150
Número:1-3
Página de inicio:177
Página de fin:185
DOI: http://dx.doi.org/10.1016/S1010-6030(02)00129-6
Título revista:Journal of Photochemistry and Photobiology A: Chemistry
Título revista abreviado:J. Photochem. Photobiol. A Chem.
ISSN:10106030
CODEN:JPPCE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_10106030_v150_n1-3_p177_Song

Referencias:

  • Förster, T., Discuss (1959) Faraday Soc, 27, p. 7
  • Clegg, R.M., (1996) Chemical Analysis Series, 137. , X.F. Wang, B. Herman (Eds.), Wiley, New York
  • Selvin, P.R., (1995) Method. Enzymol, 246, p. 300
  • Lippincott-Schwartz, J., Snapp, E., Kenworthy, A., (2001) Nat. Rev. Mol. Cell Biol, 2, p. 444
  • Goedhart, J., Gadella, T.W.J., (2000) Root Hairs: Cell and Molecular Biology, , R.W. Ridge, A.M.C. Emons (Eds.), Springer, Tokyo
  • Selvin, P.R., (2000) Nat. Struct. Biol, 7, p. 730
  • Kenworthy, A.K., Edidin, M., (1999) Method. Mol. Biol, 116, p. 37
  • Bastiaens, P.I.H., Jovin, T.M., (1998) Cell Biology: A Laboratory Handbook, 3. , J.E. Celis (Ed.), 2nd Edition, Academic Press, New York
  • Gordon, G.W., Berry, G., Liang, X.H., Levine, B., Herman, B., (1998) Biophys. J, 74, p. 2702
  • Hanson, M.R., Kohler, R.H., (2001) J. Exp. Bot, 52, p. 529
  • Harpur, A.G., Wouters, F.S., Bastiaens, P.I., (2001) Nat. Biotechnol, 19, p. 167
  • Chamberlain, C., Hahn, K.M., (2000) Traffic, 1, p. 755
  • Miyawaki, A., Tsien, R.Y., (2000) Method. Enzymol, 327, p. 472
  • Gadella, T.W.J., van der Krogt, G.N.M., Bisseling, T., (1999) Trends Plant Sci, 4, p. 287
  • Heim, R., (1999) Method. Enzymol, 302, p. 408
  • Pollok, B.A., Heim, R., (1999) Trends Cell Biol, 9, p. 57
  • Adams, S.R., Harootunian, A.T., Ying Ji, B., Taylor, S.S., Tsien, R.Y., (1991) Nature, 349, p. 694
  • Clegg, R.M., (1992) Method. Enzymol, 211, p. 353
  • Jares-Erijman, E.A., Jovin, T.M., (1996) J. Mol. Biol, 257, p. 597
  • Jovin, T.M., Arndt-Jovin, D.J., (1989) Annu. Rev. Biophys. Biophys. Chem, 18, p. 271
  • Jovin, T.M., Arndt-Jovin, D.J., (1989) Cell Structure and Function by Microspectrofluorometry, , E. Kohen, J.G. Hirschberg, J.S. Ploem (Eds.) Academic Press, London
  • Luby-Phelps, K., Lanni, F., Taylor, D.L., (1988) Annu. Rev. Biophys. Biophys. Chem, 17, p. 369
  • Bastiaens, P.I.H., Majoul, I.V., Verveer, P.J., Söling, H.D., Jovin, T.M., (1996) EMBO J, 15, p. 4246
  • Varma, R., Mayor, S., (1998) Nature, 394, p. 798
  • Wouters, F.S., Bastiaens, P.I., Wirtz, K.W., Jovin, T.M., (1998) EMBO J, 17, p. 7179
  • Wouters, F.S., Bastiaens, P.I.H., (1999) Curr. Biol, 9, p. 1127
  • Kenworthy, A.K., Petranova, N., Edidin, M., (2000) Mol. Biol. Cell, 11, p. 1645
  • Bastiaens, P.I.H., Jovin, T.M., (1996) Proc. Natl. Acad. Sci. USA, 93, p. 8407
  • Szabo G., Jr., Weaver, J.L., Pine, P.S., Rao, P.E., Aszalos, A., (1995) Biophys. J, 68, p. 1170
  • Wouters, F.S., Bastiaens, P.I.H., Wirtz, K.W.A., Jovin, T.M., (1998) EMBO J, 17, p. 7179
  • Young, R.M., Arnette, J.K., Roess, D.A., Barisas, B.G., (1994) Biophys. J, 67, p. 881
  • Song, L., Hennink, E., Young, I.T., Tanke, H.J., (1995) Biophys. J, 68, p. 2588
  • Song, L., Varma, C.A.G.O., Verhoeven, J.W., Tanke, H.J., (1996) Biophys. J, 70, p. 2959
  • Crano, J.C., Guglielmetti, R.J., (1999) Organic Photochromic and Thermochromic Compounds, 1. , (Eds.), Kluwer Academic Publishers/Plenum Press, New York
  • Crano, J.C., Guglielmetti, R.J., (1999) Organic Photochromic and Thermochromic Compounds, 2. , (Eds.), Kluwer Academic Publishers/ Plenum Press, New York
  • Dürr, H., Bouas-Laurent, H., (1990) Photochromism: Molecules and Systems, , (Eds.), Elsevier. Amsterdam
  • Irie, M., (2000) Chem. Rev, 100, p. 1685
  • Guglielmetti, R., (1990) Photochromism: Molecules and Systems, , H. Dürr, H. Bouas-Laurent (Eds.) Elsevier, Amsterdam
  • Jares-Erijman, E., Song, L., Jovin, T.M., (1997) Mol. Cryst. Liq. Cryst, 298, p. 151
  • Gadella T.W.J., Jr., Jovin, T.M., Clegg, R.M., (1993) Biophys. Chem, 48, p. 221
  • Morgan, C.G., Hua, Y., Mitchell, A.C., Murray, J.G., Boardman, A.D., (1996) Rev. Sci. Instrum, 67, p. 41
  • Baumann, J., Calzaferri, G., Forss, L., Hugentobler, T., (1985) J. Photochem, 28, p. 457
  • Chibisov, A.K., Görner, H., (1997) J. Photochem. Photobiol. A, 105, p. 261
  • Görner, H., (1997) Chem. Phys, 222, p. 315
  • Atassi, Y., Delaire, J.A., Nakatani, K., (1995) J. Phys. Chem, 99, p. 16320
  • Ernsting, N.P., (1989) Chem. Phys. Lett, 159, p. 526
  • Krysanov, S.A., Alfimov, M.V., (1982) Chem. Phys. Lett, 91, p. 77
  • Horie, K., Hirao, K., Mita, I., Takubo, Y., Okamoto, T., Washio, M., Tagawa, S., Tabata, Y., (1985) Chem. Phys. Lett, 119, p. 499
  • Samat, A., Kister, J., Garnier, F., Metzger, J., Guglielmetti, R., (1975) Bull. Soc. Chim. Fr, p. 2627
  • Haugland, R.P., (1998) Handbook of Fluorescent Probes and Research Chemicals, , 6th Edition, Molecular Probes Inc., Eugene, Oregon
  • Pimienta, V., Lavabre, D., Levy, G., Samat, A., Guglielmetti, R., Micheau, J.C., (1996) J. Phys. Chem, 100, p. 4485

Citas:

---------- APA ----------
Song, L., Jares-Erijman, E.A. & Jovin, T.M. (2002) . A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). Journal of Photochemistry and Photobiology A: Chemistry, 150(1-3), 177-185.
http://dx.doi.org/10.1016/S1010-6030(02)00129-6
---------- CHICAGO ----------
Song, L., Jares-Erijman, E.A., Jovin, T.M. "A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET)" . Journal of Photochemistry and Photobiology A: Chemistry 150, no. 1-3 (2002) : 177-185.
http://dx.doi.org/10.1016/S1010-6030(02)00129-6
---------- MLA ----------
Song, L., Jares-Erijman, E.A., Jovin, T.M. "A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET)" . Journal of Photochemistry and Photobiology A: Chemistry, vol. 150, no. 1-3, 2002, pp. 177-185.
http://dx.doi.org/10.1016/S1010-6030(02)00129-6
---------- VANCOUVER ----------
Song, L., Jares-Erijman, E.A., Jovin, T.M. A photochromic acceptor as a reversible light-driven switch in fluorescence resonance energy transfer (FRET). J. Photochem. Photobiol. A Chem. 2002;150(1-3):177-185.
http://dx.doi.org/10.1016/S1010-6030(02)00129-6