Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill-coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations. © 2014 European Society For Evolutionary Biology.

Registro:

Documento: Artículo
Título:Developmental thermal plasticity among Drosophila melanogaster populations
Autor:Fallis, L.C.; Fanara, J.J.; Morgan, T.J.
Filiación:Division of Biology, Ecological Genomics Institute, Kansas State University, Manhattan, KS, United States
Departamento de Ecologia, Genetica y Evolucion-IEGEBA (CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina
Palabras clave:Chill-coma recovery; Cold acclimation; Phenotypic plasticity; Temperature stress resistance; Thermotolerance; animal; Drosophila melanogaster; female; genetic variation; genetics; genotype; physiology; South America; temperature; Animals; Drosophila melanogaster; Female; Genetic Variation; Genotype; South America; Temperature
Año:2014
Volumen:27
Número:3
Página de inicio:557
Página de fin:564
DOI: http://dx.doi.org/10.1111/jeb.12321
Título revista:Journal of Evolutionary Biology
Título revista abreviado:J. Evol. Biol.
ISSN:1010061X
CODEN:JEBIE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1010061X_v27_n3_p557_Fallis

Referencias:

  • Austin, C.J., Moehring, A.J., Optimal temperature range of a plastic species, Drosophila simulans (2013) J. Anim. Ecol., 82, pp. 663-672
  • Ayrinhac, A., Debat, V., Gibert, P., Kister, A.G., Legout, H., Moreteau, B., Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability (2004) Funct. Ecol., 18, pp. 700-706
  • Bubliy, O.A., Kristensen, T.N., Kellermann, V., Loeschcke, V., Plastic responses to four environmental stresses and cross-resistance in a laboratory population of Drosophila melanogaster (2012) Funct. Ecol., 26, pp. 245-253
  • Cheviron, Z.A., Whitehead, A., Brumfield, R.T., Transcriptomic variation and plasticity in rufous-collared sparrows (Zonotrichia capensis) along an altitudinal gradient (2008) Mol. Ecol., 17, pp. 4556-4569
  • Clarke, A., The influence of climate chance of the distribution and evolution of organisms (1996) Animals and Temperature: Phenotypic and Evolutionary Adaptation, pp. 377-407. , (I.A. Johnston, A.F. Bennett, eds). Cambridge University Press, Cambridge
  • Crispo, E., Chapman, L.J., Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish (2010) J. Evol. Biol., 23, pp. 2091-2103
  • David, J.R., Capy, P., Genetic variation of Drosophila melanogaster natural populations (1988) Trends Genet., 4, pp. 106-111
  • Deere, J.A., Sinclair, B.J., Marshall, D.J., Chown, S.L., Phenotypic plasticity of thermal tolerance in five oribatid mite species from sub-Antarctic Marion Island (2006) J. Insect Physiol., 52, pp. 693-700
  • DeWitt, T.J., Sih, A., Wilson, D.S., Costs and limits of phenotypic plasticity (1998) Trends Ecol. Evol., 13, pp. 77-81
  • Fallis, L.C., Fanara, J.J., Morgan, T.J., Genetic variation in heat-stress tolerance among South American Drosophila populations (2012) Genetica, 139, pp. 1331-1337
  • Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in development time and viability, and the response to thermal treatments in two species of Drosophila (2008) Biol. J. Linn. Soc., 95, pp. 233-245
  • Ghalambor, C.K., McKay, J.K., Carroll, S.P., Reznick, D.N., Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments (2007) Funct. Ecol., 21, pp. 394-407
  • Gibbs, A.G., Perkins, M.C., Markow, T.A., No place to hide: microclimates of sonoran desert (2003) Drosophila. J. Therm. Biol., 28, pp. 353-362
  • Gibert, P., Huey, R.B., Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny (2001) Physiol. Biochem. Zool., 74, pp. 429-434
  • Gibert, P., Moreteau, B., Pétavy, G., Karan, D., David, J.R., Chill-coma tolerance, a major climatic adaptation among Drosophila species (2001) Evolution, 55, pp. 1063-1068
  • Grant, V., (1977) Organismic Evolution, , Freeman, San Francisco, CA
  • Hoffmann, A.A., Parsons, P.A., (1991) Evolutionary Genetics of Environmental Stress, , Oxford University Press, Oxford
  • Hoffmann, A.A., Parsons, P.A., (1997) Extreme Environmental Change and Evolution, , Cambridge University Press, Cambridge
  • Hoffmann, A.A., Willi, Y., Detecting genetic responses to environmental change (2008) Nat. Rev. Genet., 9, pp. 421-432
  • Hoffmann, A.A., Hallas, R.J., Dean, J.A., Schiffer, M., Low potential for climatic stress adaptation in a rainforest Drosophila species (2003) Science, 301, pp. 100-102
  • Hoffmann, A.A., Sørensen, J.G., Loeschcke, V., Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches (2003) J. Therm. Biol, 28, pp. 175-216
  • Hoffmann, A.A., Shirriffs, J., Scott, M., Relative importance of plastic vs genetic factors in adaptive differentiation: geographical variation for stress resistance in Drosophila melanogaster from eastern Australia (2005) Funct. Ecol., 19, pp. 222-227
  • Ishihara, M., Adaptive phenotypic plasticity and its difference between univoltine and multivoltine populations in a bruchid beetle, Kytorhinus sharpianus (1999) Evolution, 53, pp. 1979-1986
  • Karl, I., Sørensen, J.G., Loeschcke, V., Fischer, K., HSP70 expression in the copper butterfly Lycaena tityrus across altitudes and temperatures (2009) J. Evol. Biol., 22, pp. 172-178
  • Lavagnino, N.J., Anholt, R.R., Fanara, J.J., Variation in genetic architecture of olfactory behaviour among wild-derived populations of Drosophila melanogaster (2008) J. Evol. Biol., 21, pp. 988-996
  • Lee, J.R.E., Chen, C., Denlinger, D.L., A rapid cold-hardening process in insects (1987) Science, 283, pp. 1415-1417
  • Levin, D.A., Local differentiation and the breeding structure of plant populations (1988) Plant Evolutionary Biology, pp. 305-329. , L.D. Gottlieb & S.K. Jain, eds). Chapman & Hall, New York, NY
  • Levine, M.T., Eckert, M.L., Begun, D.J., Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from Eastern Australia (2011) Mol. Biol. Evol., 28, pp. 249-256
  • Mitchell-Olds, T., Rutledge, J.J., Quantitative genetics in natural plant populations: a review of the theory (1986) Am. Nat., 127, pp. 379-402
  • Morgan, T.J., Mackay, T.F.C., Quantitative trait loci for thermotolerance phenotypes in Drosophila melanogaster (2006) Heredity, 96, pp. 232-242
  • Norry, F.M., Dahlgaard, J., Loeschcke, V., Quantitative trait loci affecting knockdown resistance to high temperature in Drosophila melanogaster (2004) Mol. Ecol., 13, pp. 3585-3594
  • Norry, F.M., Scannapieco, A.C., Sambucetti, P., Bertoli, C.I., Loeschcke, V., QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill-coma recovery in an intercontinental set of recombinant inbred lines of Drosophila melanogaster (2008) Mol. Ecol., 17, pp. 4570-4581
  • Overgaard, J., Tomcala, A., Sørensen, J.G., Holmstrup, M., Krogh, P.H., Simek, P., Effects of acclimation temperature on thermal tolerance and membrane phospholipid composition in the fruit fly Drosophila melanogaster (2008) J. Insect Physiol., 54, pp. 619-629
  • Pigliucci, M., Murren, C.J., Genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by? (2003) Evolution, 57, pp. 1455-1464
  • Price, T.D., Qvarnstorm, A., Irwin, D.E., The role of phenotypic plasticity in driving genetic evolution (2003) Proc. R. Soc. Lond. B, 270, pp. 1433-1440
  • Rashkovetsky, E., Iliadi, K., Michalak, P., Lupu, A., Nevo, E., Feder, M.E., Adaptive differentiation of thermotolerance in Drosophila along a microclimatic gradient (2006) Heredity, 96, pp. 353-359
  • Reusch, T.B.H., Wood, T.E., Molecular ecology of global change (2007) Mol. Ecol., 16, pp. 3973-3992
  • Robinson, B.W., Dukas, R., The influence of phenotypic modifications on evolution: the Baldwin effect and modern perspectives (1999) Oikos, 85, pp. 582-589
  • (2009), 16, pp. 3973-3992. , SAS Institute. SAS/STAT 9.2 User's Guide, Release 9.2 Edition. SAS Institute, Cary, NC; Scheiner, S.M., Genetics and evolution of phenotypic plasticity (1993) Annu. Rev. Ecol. Syst., 24, pp. 35-68
  • Schlichting, C.D., Smith, H., Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes (2002) Evol. Ecol., 16, pp. 189-211
  • Sgro, C.M., Overgaard, J., Kristensen, T.N., Mitchell, K.A., Cockerell, F.E., Hoffmann, A.A., A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia (2010) J. Evol. Biol., 23, pp. 2484-2493
  • Swindell, W.R., Huebner, M., Weber, A.P., Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana (2007) Heredity, 99, pp. 143-150
  • Trotta, V., Calboli, F.C., Ziosi, M., Guerra, D., Pezzoli, M.C., David, J.R., Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations (2006) BMC Evol. Biol., 6, p. 67
  • Trussell, G.C., Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail (2000) Evolution, 54, pp. 151-166
  • Umina, P.A., Weeks, A.R., Kearney, M.R., McKechnie, S.W., Hoffmann, A.A., A rapid shift in a classic clinal pattern in Drosophila reflecting climate change (2005) Science, 308, pp. 691-693
  • Winterhalter, W.E., Mousseau, T.A., Patterns of phenotypic and genetic variation for the plasticity of diapause incidence (2007) Evolution, 61, pp. 1520-1531
  • Zhen, Y., Ungerer, M.C., Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana (2008) New Phytol., 177, pp. 419-427

Citas:

---------- APA ----------
Fallis, L.C., Fanara, J.J. & Morgan, T.J. (2014) . Developmental thermal plasticity among Drosophila melanogaster populations. Journal of Evolutionary Biology, 27(3), 557-564.
http://dx.doi.org/10.1111/jeb.12321
---------- CHICAGO ----------
Fallis, L.C., Fanara, J.J., Morgan, T.J. "Developmental thermal plasticity among Drosophila melanogaster populations" . Journal of Evolutionary Biology 27, no. 3 (2014) : 557-564.
http://dx.doi.org/10.1111/jeb.12321
---------- MLA ----------
Fallis, L.C., Fanara, J.J., Morgan, T.J. "Developmental thermal plasticity among Drosophila melanogaster populations" . Journal of Evolutionary Biology, vol. 27, no. 3, 2014, pp. 557-564.
http://dx.doi.org/10.1111/jeb.12321
---------- VANCOUVER ----------
Fallis, L.C., Fanara, J.J., Morgan, T.J. Developmental thermal plasticity among Drosophila melanogaster populations. J. Evol. Biol. 2014;27(3):557-564.
http://dx.doi.org/10.1111/jeb.12321