Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Host shifts cause drastic consequences on fitness in cactophilic species of Drosophila. It has been argued that changes in the nutritional values accompanying host shifts may elicit these fitness responses, but they may also reflect the presence of potentially toxic secondary compounds that affect resource quality. Recent studies reported that alkaloids extracted from the columnar cactus Trichocereus terscheckii are toxic for the developing larvae of Drosophila buzzatii. In this study, we tested the effect of artificial diets including increasing doses of host alkaloids on developmental stability and wing morphology in D. buzzatii. We found that alkaloids disrupt normal wing venation patterning and affect viability, wing size and fluctuating asymmetry, suggesting the involvement of stress-response mechanisms. Theoretical implications are discussed in the context of developmental stability, stress, fitness and their relationship with robustness, canalization and phenotypic plasticity. © 2014 European Society For Evolutionary Biology.

Registro:

Documento: Artículo
Título:Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii
Autor:Padró, J.; Carreira, V.; Corio, C.; Hasson, E.; Soto, I.M.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA - CONICET/UBA), Buenos Aires, Argentina
Palabras clave:Cactus; Fluctuating asymmetry; Hormesis; Phenotypic plasticity; Robustness; Venation pattern; Cactaceae; Drosophila buzzatii; alkaloid; analysis of variance; animal; biological model; Cactaceae; chemistry; dose response; Drosophila; drug effects; forelimb; growth, development and aging; Alkaloids; Analysis of Variance; Animals; Cactaceae; Dose-Response Relationship, Drug; Drosophila; Models, Biological; Wing
Año:2014
Volumen:27
Número:12
Página de inicio:2781
Página de fin:2797
DOI: http://dx.doi.org/10.1111/jeb.12537
Título revista:Journal of Evolutionary Biology
Título revista abreviado:J. Evol. Biol.
ISSN:1010061X
CODEN:JEBIE
CAS:Alkaloids
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_1010061X_v27_n12_p2781_Padro

Referencias:

  • Allenbach, D.M., Sullivan, K.B., Lydy, M.J., Higher fluctuating asymmetry as a measure of susceptibility to pesticides in fishes (1999) Environ. Toxicol. Chem., 18, pp. 899-905
  • Artieri, C., Haerty, W., Singh, R., Ontogeny and phylogeny: molecular signatures of selection, constraint, and temporal pleiotropy in the development of Drosophila (2009) BMC Biol., 7, p. 42
  • Azevedo, R.B.R., French, V., Partridge, L., Temperature modulates epidermal cell size in Drosophila melanogaster (2002) J. Insect Physiol., 48, pp. 231-237
  • Badyaev, A.V., Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation (2005) Proc. R. Soc. Ser. B., 272, pp. 877-886
  • Barker, J.S.F., Population genetics of Opuntia breeding Drosophila in Australia (1982) Ecological Genetics and Evolution: The Cactus- Yeast-Drosophila Model System, pp. 209-224. , In: (J.S.F. Barker & W.T. Starmer, eds) -. Academic Press, Sydney
  • Bijlsma, R., Loeschcke, V., (1997) Environmental Stress, Adaptation, and Evolution, , Birkhäuser Verlag, Basel, Switzerland
  • Bijlsma, R., Loeschcke, V., Environmental stress, adaptation and evolution: an overview (2005) J. Evol. Biol., 18, pp. 744-749
  • Blair, S.S., Wing vein patterning in Drosophila and the analysis of intercellular signaling (2007) Annu. Rev. Cell Dev. Biol., 23, pp. 293-319
  • Bourguet, D., Guillemaud, T., Chevillon, C., Raymond, M., Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens (2004) Evolution, 58, pp. 128-135
  • Breno, M., Leirs, H., Van Dongen, S., No relationship between canalization and developmental stability of the skull in a natural population of Mastomys natalensis (Rodentia: Muridae) (2011) Biol. J. Linnean Soc., 104, pp. 207-216
  • Breno, M., Bots, J., Schaepdrijver, L., Dongen, S., Fluctuating asymmetry as risk marker for stress and structural defects in a toxicologic experiment (2013) Birth Defects Res B Dev. Reprod. Toxicol., 98, pp. 310-317
  • Breuker, C.J., Patterson, J.S., Klingenberg, C.P., A single basis for developmental buffering of Drosophila wing shape (2006) PLoS ONE, 1, p. e7
  • Calabrese, E.J., Baldwin, L.A., Toxicology rethinks its central belief (2003) Nature, 421, pp. 691-692
  • Calabrese, E.J., Baldwin, L.A., Holland, C.D., Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment (1999) Risk Anal., 19, pp. 261-281
  • Carreira, V.P., Soto, I.M., Mensch, J., Fanara, J.J., Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation (2011) BMC Dev. Biol., 11, pp. 1-16
  • Carreira, V.P., Padró, J., Mongiardino, N., Fontanarrosa, P., Alonso, I., Soto, I.M., Nutritional composition of Opuntia sulphurea (g. Don in loudon) cladodes (2014) Haseltonia, 19, pp. 38-45
  • Corio, C., Soto, I.M., Carreira, V., Padró, J., Betti, M.I., Hasson, E., An alkaloid fraction extracted from the cactus Trichocereus terscheckii affects fitness in the cactophilic fly Drosophila buzzatii (Diptera: Drosophilidae) (2013) Biol. J. Linn. Soc., 109, pp. 342-353
  • Debat, V., David, P., Mapping phenotypes: canalization, plasticity and developmental stability (2001) Trends Ecol. Evol., 16, pp. 555-561
  • Debat, V., Alibert, P., David, P., Paradis, E., Auffray, J.C., Correction for Debat , Independence between developmental stability and canalization in the skull of the house mouse (2001) Proc. R. Soc. B, 268, pp. 2613-2613
  • Debat, V., Debelle, A., Dworkin, I., Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature (2009) Evolution, 63, pp. 2864-2876
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., Robledo, C.W., (2013) Grupo InfoStat, , http://www.infostat.com.ar, InfoStat versión. Universidad Nacional de Córdoba, Argentina, FCA. Available at:
  • Dongen, S.V., Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future (2006) J. Evol. Biol., 19, pp. 1727-1743
  • Dworkin, I., A study of canalization and developmental stability in the sternopleural bristle system of Drosophila melanogaster (2005) Evolution, 59, pp. 1500-1509
  • Floate, K.D., Fox, A.S., Flies under stress: a test of fluctuating asymmetry as a biomonitor of environmental quality (2000) Ecol. Appl., 10, pp. 1541-1550
  • Fogleman, J.C., Danielson, P.B., Chemical interactions in the cactus-microorganism-Drosophila model system of the Sonoran Desert (2001) Am. Zool., 41, pp. 877-889
  • Forbes, V.E., Is hormesis an evolutionary expectation? (2000) Funct. Ecol., 14, pp. 12-24
  • Guerra, D., Pezzoli, M.C., Giorgi, G., Garoia, F., Cavicchi, S., Developmental constraints in the Drosophila wing (1997) Heredity, 79, pp. 564-571
  • Hasson, E., Soto, I.M., Carreira, V.P., Corio, C., Soto, E.M., Betti, M.I.L., Host plants, fitness and developmental instability, in a guild of cactophilic species of the genus Drosophila (2009) Ecotoxicology Research Developments, pp. 89-109. , In: (E.B. Santos, ed.) -. Nova Science Publisher, Inc., Hauppauge, NY
  • Hirsch, K.S., Fritz, H.I., Teratogenic effects of mescaline, epinephrine, and norepinephrine in the hamster (1981) Teratology, 23, pp. 287-291
  • Hoffman, A.A., Woods, R.E., Associating environmental stress with developmental stability: problems and patterns (2003) Developmental Instability: Causes and Consequences, pp. 387-401. , In: Oxford University Press, New York, USA
  • Hurtado, L., Castrezana, S., Mateos, M., McLaurin, D., Tello, M.K., Campoy, J., Developmental stability and environmental stress in natural populations of Drosophila pachea (1997) Ecotoxicology, 6, pp. 233-238
  • Jackson, D.M., Johnson, A.W., Stephenson, M.G., Survival and development of Heliothis virescens (Lepidoptera: Noctuidae) larvae on isogenic tobacco lines with different levels of alkaloids (2002) J. Econ. Entomol., 95, pp. 1294-1302
  • Klingenberg, C.P., MorphoJ: an integrated software package for geometric morphometrics (2011) Mol. Ecol. Resour., 11, pp. 353-357
  • Klingenberg, C.P., McIntyre, G.S., Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods (1998) Evolution, 52, pp. 1363-1375
  • Klingenberg, C.P., Zaklan, S.D., Morphological integration between developmental compartments in the Drosophila wing (2000) Evolution, 54, pp. 1273-1285
  • Leamy, L.J., Klingenberg, C.P., The genetics and evolution of fluctuating asymmetry (2005) Annu. Rev. Ecol. Evol. Syst., 36, pp. 1-21
  • Lens, L., Van Dongen, S., Kark, S., Matthysen, E., Fluctuating asymmetry as an indicator of fitness: can we bridge the gap between studies? (2002) Biol. Rev., 77, pp. 27-38
  • Mardia, K.V., Bookstein, F.L., Moreton, I.J., Statistical assessment of bilateral symmetry of shapes (2000) Biometrika, 2, pp. 285-300
  • Markow, T.A., Evolutionary ecology and developmental instability (1995) Annu. Rev. Entomol., 40, pp. 105-120
  • Marquez, E., (2006), http://www-personal.umich.edu/~emarquez/morph/, Sage: symmetry and asymmetry in geometric data. Ver 1.05; Matzkin, L.M., Population transcriptomics of cactus host shifts in Drosophila mojavensis (2012) Mol. Ecol., 21, pp. 2428-2439
  • McKenzie, J.A., Yen, J.L., Genotype, environment and the asymmetry phenotype. Dieldrin-resistance in Lucilia cuprina (the Australian sheep blowfly) (1995) Heredity, 75, pp. 181-187
  • Narberhaus, I., Zintgraf, V., Dobler, S., Pyrrolizidine alkaloids on three trophic levels-evidence for toxic and deterrent effects on phytophages and predators (2005) Chemoecology, 15, pp. 121-125
  • Nijhout, H.F., Davidowitz, G., Developmental perspectives on phenotypic plasticity, canalization, and fluctuating asymmetry (2003) Developmental Instability: Causes and Consequences, pp. 3-13. , In: (M. Polak, ed.) -. Oxford University Press, New York
  • Ogunbodede, O., McCombs, D., Trout, K., Daley, P., Terry, M., New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae)("San Pedro") and their relevance to shamanic practice (2010) J. Ethnopharmacol., 131, pp. 356-362
  • Oosterbaan, R.J., Sharma, D.P., Singh, K.N., Crop production and soil salinity: Evaluation of field data from India by segmented linear regression (1990) Symposium on Land Drainage for Salinity Control in Arid and Semi-Arid Regions, 3, pp. 373-382
  • Padró, J., Soto, I.M., Nutritional profile of Trichocereus terschekii (Parmentier) Britton & Rose stems (2013) J. Prof. Assoc. Cactus Develop., 15, pp. 1-12
  • Palmer, A.R., Fluctuating asymmetry: a primer (1994) Developmental Instability: Its Origins and Evolutionary Implications, pp. 335-364. , In: (T.A. Markow, ed.) -. Kluwer, Dordrecht, The Netherlands
  • Palmer, A.R., Strobeck, C., Fluctuating asymmetry: measurement, analysis, patterns (1986) Annu. Rev. Ecol. Evol. Syst., 17, pp. 391-421
  • Parson, P.A., Metabolic efficiency in response to environmental agents predicts hormesis and invalidates the linear No-Threshold Premise: ionizing radiation as a case study (2003) Crit. Rev. Toxicol., 33, pp. 443-450
  • Parsons, P.A., Adaptive strategies of colonizing animal species (1982) Biol. Rev., 57, pp. 117-148
  • Polak, M., Opoka, R., Cartwright, I.L., Response of fluctuating asymmetry to arsenic toxicity: support for the developmental selection hypothesis (2002) Environ. Pollut., 118, pp. 19-28
  • Rabitsch, W.B., Levels of asymmetry in Formica prate-nsis Retz. (Hymenoptera, insecta) from a chronic metal-contaminated site (1997) Environ. Toxicol. Chem., 16, pp. 1433-1440
  • Rasmuson, M., Fluctuating asymmetry-indicator of what? (2002) Hereditas, 136, pp. 177-183
  • Reiter, L.T., Eng, D., Oscarson, M., Bier, E., Mis-expression of human cytochrome P450 (CYP2D6-T107A) in the Drosophila wing results in wing patterning defects (2000) A. Dros. Res., 41, p. 604C
  • Rendic, S., Summary of information on human CYP enzymes: human P450 metabolism data (2002) Drug Metab. Rev., 34, pp. 83-448
  • Reti, L., Castrillon, J.A., Cactus alkaloids. I. Trichocereus terscheckii (Parmentier) Britton and Rose (1951) J. Am. Chem. Soc., 73, pp. 1767-1769
  • Roff, D.A., Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence (2000) J Evol Biol., 13, pp. 434-445
  • Rutherford, S.L., From genotype to phenotype: buffering mechanisms and the storage of genetic information (2000) BioEssays, 22, pp. 1095-1105
  • Schoonhoven, L.M., Loon, J.V., Dicke, M., (2005) Insect-Plant Biology, , 2nd edn. Oxford University Press, New York, USA
  • Soto, I.M., Carreira, V.P., Soto, E.M., Hasson, E., Wing morphology and fluctuating asymmetry depend on the host plant in cactophilic Drosophila (2008) J. Evol. Biol., 21, pp. 598-609
  • Soto, I.M., Carreira, V.P., Corio, C., Padró, J., Soto, E.M., Hasson, E., Differences in tolerance to host cactus alkaloids in Drosophila koepferae and D. buzzatii (2014) PLoS ONE, 9, p. e88370
  • Stamenkovic-Radak, M., Kalajdzic, P., Savic, T., Savic, M., Kurbalija, Z., Rasic, G., Trade-offs between growth and reproduction: an analysis of the quantitative genetic evidence (2000) J. Evol. Biol., 13, pp. 434-445
  • Timbrel, J.A., (2009) Principles of Biochemical Toxicology, , 4th edn. Informa Healthcare, London
  • Toms, J.D., Lesperance, M.L., Piecewise regression: a tool for identifying ecological thresholds (2003) Ecology, 84, pp. 2034-2041
  • Waddington, C.H., (1957) The Strategy of the Genes, , Macmillan, New York
  • Whitman, D.W., Agrawal, A.A., What is phenotypic plasticity and why is it important? (2009) Phenotypic Plasticity of Insects, pp. 1-63. , In: (D.W. Whitman & T.N. Ananthakrishnan, eds) -. Science Publishers, Enfield, NH
  • Wink, M., Importance of plant secondary metabolites for protection against insects and microbial infections (2006) Naturally Occurring Bioactive Compounds, pp. 251-268. , In: (M. Rai & M.C. Carpinella, eds) -. Elsevier, Amsterdam
  • Wittes, J., Wallenstein, S., The power of the mantel-haenszel test (1993) Biometrics, 49, pp. 1077-1087
  • Zar, J.H., (1996) Biostatistical Analysis, , Prentice Hall Inc, New Jersey

Citas:

---------- APA ----------
Padró, J., Carreira, V., Corio, C., Hasson, E. & Soto, I.M. (2014) . Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii. Journal of Evolutionary Biology, 27(12), 2781-2797.
http://dx.doi.org/10.1111/jeb.12537
---------- CHICAGO ----------
Padró, J., Carreira, V., Corio, C., Hasson, E., Soto, I.M. "Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii" . Journal of Evolutionary Biology 27, no. 12 (2014) : 2781-2797.
http://dx.doi.org/10.1111/jeb.12537
---------- MLA ----------
Padró, J., Carreira, V., Corio, C., Hasson, E., Soto, I.M. "Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii" . Journal of Evolutionary Biology, vol. 27, no. 12, 2014, pp. 2781-2797.
http://dx.doi.org/10.1111/jeb.12537
---------- VANCOUVER ----------
Padró, J., Carreira, V., Corio, C., Hasson, E., Soto, I.M. Host alkaloids differentially affect developmental stability and wing vein canalization in cactophilic Drosophila buzzatii. J. Evol. Biol. 2014;27(12):2781-2797.
http://dx.doi.org/10.1111/jeb.12537