Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A mechanistic global circulation model is used to simulate the Southern Hemisphere stratospheric, mesospheric, and lower thermospheric circulation during austral winter. The model includes a gravity wave (GW) parameterization that is initiated by prescribed 2-D fields of GW parameters in the troposphere. These are based on observations of GW potential energy calculated using GPS radio occultations and show enhanced GW activity east of the Andes and around the Antarctic. In order to detect the influence of an observation-based and thus realistic 2-D GW distribution on the middle atmosphere circulation, we perform model experiments with zonal mean and 2-D GW initialization, and additionally with and without forcing of stationary planetary waves (SPWs) at the lower boundary of the model. As a result, we find additional forcing of SPWs in the stratosphere, a weaker zonal wind jet in the mesosphere, cooling of the mesosphere and warming near the mesopause above the jet. SPW wavenumber 1 (SPW1) amplitudes are generally increased by about 10ĝ€% when GWs are introduced being longitudinally dependent. However, at the upper part of the zonal wind jet, SPW1 in zonal wind and GW acceleration are out of phase, which reduces the amplitudes there.

Registro:

Documento: Artículo
Título:On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation
Autor:Lilienthal, F.; Jacobi, C.; Schmidt, T.; De La Torre, A.; Alexander, P.
Filiación:Institute for Meteorology, University of Leipzig, Leipzig, Germany
GFZ German Research Centre for Geosciences, Potsdam, Germany
Facultad de Ingeniería, Universidad Austral and CONICET, Buenos Aires, Argentina
Instituto de Fisica, CONICET, Buenos Aires, Argentina
Palabras clave:Meteorology and atmospheric dynamics (middle atmosphere dynamics); atmospheric general circulation model; gravity wave; mesosphere; parameterization; Southern Hemisphere; stratosphere; thermosphere; winter
Año:2017
Volumen:35
Número:4
Página de inicio:785
Página de fin:798
DOI: http://dx.doi.org/10.5194/angeo-35-785-2017
Título revista:Annales Geophysicae
Título revista abreviado:Ann. Geophys.
ISSN:09927689
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09927689_v35_n4_p785_Lilienthal

Referencias:

  • Alexander, M.J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., AndWatanabe, S., Recent developments in gravity-wave effects in climate models and the global distribution of gravitywave momentum flux from observations and models (2010) Q. J. Roy. Meteor. Soc, 136, pp. 1103-1124. , https://doi.org/10.1002/qj.637
  • Alexander, P., Luna, D., Llamedo, P., De La Torre, A., A gravity waves study close to the Andes mountains in Patagonia and Antarctica with GPS radio occultation observations (2010) Ann. Geophys, 28, pp. 587-595. , https://doi.org/10.5194/angeo-28-587-2010
  • Alexander, P., De La Torre, A., Schmidt, T., Llamedo, P., Hierro, R., Limb sounders tracking topographic gravity wave activity from the stratosphere to the ionosphere around midlatitude Andes (2015) J. Geophys. Res.-Space, 120, pp. 9014-9022. , https://doi.org/10.1002/2015JA021409
  • Andrews, D.G., Holton, J.R., Leovy, C.B., (1987) Middle Atmosphere Dynamics, , Academic Press Inc. (London) Ltd
  • Baumgaertner, A.J.G., McDonald, A.J., A gravity wave climatology for antarctica compiled from challenging minisatellite payload/global positioning system (champ/GPS) radio occultations (2007) J. Geophys. Res.-Atmos, 112, p. D05103. , https://doi.org/10.1029/2006JD007504
  • (2015), http://cdaac-www.cosmic.ucar.edu/cdaac/products.html, CDAAC Data Accesslast access: July 2017; Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Vitart, F., The ERA-Interim reanalysis: Configuration and performance of the data assimilation system (2011) Q. J. Roy. Meteor. Soc, 137, pp. 553-597. , https://doi.org/10.1002/qj.828
  • De La Torre, A., Alexander, P., Gravity waves above Andes detected from GPS radio occultation temperature profiles: Mountain forcing (2005) Geophys. Res. Lett, 32, p. L17815. , https://doi.org/10.1029/2005GL022959
  • De La Torre, A., Schmidt, T., Wickert, J., A global analysis of wave potential energy in the lower stratosphere derived from 5 years of GPS radio occultation data with CHAMP (2006) Geophys. Res. Lett, 33, p. L24809. , https://doi.org/10.1029/2006GL027696
  • De La Torre, A., Alexander, P., Hierro, R., Llamedo, P., Rolla, A., Schmidt, T., Wickert, J., Large-amplitude gravity waves above the southern Andes. The Drake Passage, and the Antarctic Peninsula (2012) J. Geophys. Res.-Atmos, 117, p. D02106. , https://doi.org/10.1029/2011JD016377
  • De La Torre, A., Alexander, P., Llamedo, P., Hierro, R., Nava, B., Radicella, S., Schmidt, T., Wickert, J., Wave activity at ionospheric heights above the Andes Mountains detected from FORMOSAT-3/COSMIC GPS radio occultation data (2014) J. Geophys. Res.-Space, 119, pp. 2046-2051. , https://doi.org/10.1002/2013JA018870
  • De Wit, R.J., Janches, D., Fritts, D.C., Stockwell, R.G., Coy, L., Unexpected climatological behavior of MLT gravity wave momentum flux in the lee of the Southern Andes hot spot (2017) Geophys. Res. Lett, 44, pp. 1182-1191. , https://doi.org/10.1002/2016GL072311
  • Eckermann, S.D., Preusse, P., Global measurements of stratospheric mountain waves from space (1999) Science, 286, pp. 1534-1537. , https://doi.org/10.1126/science.286.5444.1534
  • Ehard, B., Achtert, P., Dörnbrack, A., Gisinger, S., Gumbel, J., Khaplanov, M., Rapp, M., Wagner, J., Combination of lidar and model data for studying deep gravity wave propagation (2016) Mon. Weather Rev, 144, pp. 77-98. , https://doi.org/10.1175/MWR-D-14-00405.1
  • Ern, M., Preusse, P., Alexander, M.J., Warner, C.D., Absolute values of gravity wave momentum flux derived from satellite data (2004) J. Geophys. Res.-Atmos, 109, p. D20103. , https://doi.org/10.1029/2004JD004752
  • Ern, M., Preusse, P., Gille, J.C., Hepplewhite, C.L., Mlynczak, M.G., Russell, J.M., Riese, M., Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere (2011) J. Geophys. Res.-Atmos, 116, p. D19107. , https://doi.org/10.1029/2011JD015821
  • Faber, A., Llamedo, P., Schmidt, T., De La Torre, A., Wickert, J., On the determination of gravity wave momentum flux from GPS radio occultation data (2013) Atmos. Meas. Tech, 6, pp. 3169-3180. , https://doi.org/10.5194/amt-6-3169-2013
  • Fleming, E.L., Chandra, S., Barnett, J., Corney, M., Zonal mean temperature. Pressure, zonal wind and geopotential height as functions of latitude (1990) Adv. Space Res, 10, pp. 11-59. , https://doi.org/10.1016/0273-1177(90)90386-E
  • Fröhlich, K., Pogoreltsev, A., Jacobi, C., The 48 Layer COMMA-LIM Model: Model description. New Aspects, and Climatology (2003) Rep. Inst. Meteorol. Univ. Leipzig, pp. 161-189. , http://home.uni-leipzig.de/jacobi/medec/2003-COMMA-LIM.pdf, last access: July 2017
  • Fröhlich, K., Pogoreltsev, A., Jacobi, C., Middle Atmosphere Structure and Dynamics Numerical simulation of tides, Rossby and Kelvin waves with the COMMA-LIM model Adv. Space Res, 32, pp. 863-868. , https://doi.org/10.1016/S0273-1177(03)00416-2,2003b
  • Gavrilov, N., Karpova, N., Jacobi, C., Gavrilov, A., Morphology of atmospheric refraction index variations at different altitudes from GPS/MET satellite observations (2004) J. Atmos. Sol.-Terr. Phy, 66, pp. 427-435. , https://doi.org/10.1016/j.jastp.2004.01.031
  • Geller, M.A., Alexander, M.J., Love, P.T., Bacmeister, J., Ern, M., Hertzog, A., Manzini, E., Zhou, T., A comparison between gravity wave momentum fluxes in observations and climate models (2013) J. Climate, 26, pp. 6383-6405. , https://doi.org/10.1175/JCLI-D-12-00545.1
  • Guryanov, V., Fahrutdinova, A., Height-latitude structure of stationary planetary waves in the stratosphere and lower mesosphere (2014) Adv. Space Res, 53, pp. 674-688. , https://doi.org/10.1016/j.asr.2013.12.010
  • Hindley, N.P., Wright, C.J., Smith, N.D., Mitchell, N.J., The southern stratospheric gravity wave hot spot: Individual waves and their momentum fluxes measured by COSMIC GPS-RO (2015) Atmos. Chem. Phys, 15, pp. 7797-7818. , https://doi.org/10.5194/acp-15-7797-2015
  • Jacobi, C., Fröhlich, K., Pogoreltsev, A., Quasi twoday-wave modulation of gravity wave flux and consequences for the planetary wave propagation in a simple circulation model (2006) J. Atmos. Sol.-Terr. Phy, 68, pp. 283-292. , https://doi.org/10.1016/j.jastp.2005.01.017
  • Jakobs, H.J., Bischof, M., Ebel, A., Speth, P., Simulation of gravity wave effects under solstice conditions using a 3-D circulation model of the middle atmosphere (1986) J. Atmos. Terr. Phys, 48, pp. 1203-1223. , https://doi.org/10.1016/0021-9169(86)90040-1
  • Kursinski, E.R., Hajj, G.A., Schofield, J.T., Linfield, R.P., Hardy, K.R., Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System (1997) J. Geophys. Res.-Atmos, 102, pp. 23429-23465. , https://doi.org/10.1029/97JD01569
  • Matsuno, T., Numerical integration of the primitive equations by a simulated backward difference method (1966) J. Meteorol. Soc. Jpn Ser. II, 44, pp. 76-84
  • Mukhtarov, P., Pancheva, D., Andonov, B., Climatology of the stationary planetary waves seen in the SABER/TIMED temperatures (2002-2007 (2010) J. Geophys. Res.-Space, 115, p. A06315. , https://doi.org/10.1029/2009JA015156
  • Pogoreltsev, A.I., Vlasov, A.A., Fröhlich, K., Jacobi, C., Planetary waves in coupling the lower and upper atmosphere (2007) J. Atmos. Sol.-Terr. Phy, 69, pp. 2083-2101. , https://doi.org/10.1016/j.jastp.2007.05.014
  • Portnyagin, Y., Solovjova, T., Merzlyakov, E., Forbes, J., Palo, S., Ortland, D., Hocking, W., Tsutsumi, M., Mesosphere/lower thermosphere prevailing wind model (2004) Adv. Space Res, 34, pp. 1755-1762. , https://doi.org/10.1016/j.asr.2003.04.058
  • Ratnam, M.V., Tetzlaff, G., Jacobi, C., Global and seasonal variations of stratospheric gravity wave activity deduced from the champ/GPS satellite (2004) J. Atmos. Sci, 61, pp. 1610-1620. , https://doi.org/10.1175/1520-0469(2004)0611610:GASVOS2.0.CO;2
  • Reigber, C., Lühr, H., Schwintzer, P., CHAMP mission status (2002) Adv. Space Res, 30, pp. 129-134. , https://doi.org/10.1016/S0273-1177(02)00276-4
  • Rose, K., On the influence of nonlinear wave-wave interactions in a 3-D primitive equation model for Sudden stratospheric warmings (1983) Beiträge Zur Physik der Atmosphäre, 56, pp. 14-41
  • Schmidt, T., Alexander, P., De La Torre, A., Stratospheric gravity wave momentum flux from radio occultations (2016) J. Geophys. Res.-Atmos, 121, pp. 4443-4467. , https://doi.org/10.1002/2015JD024135
  • Swinbank, R., Ortland, D.A., Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) Reference Atmosphere Project (2003) J. Geophys. Res, 108, p. 4615. , https://doi.org/10.1029/2002JD003135
  • Šácha, P., Kuchar, A., Jacobi, C., Pišoft, P., Enhanced internal gravity wave activity and breaking over the northeastern Pacific-eastern Asian region (2015) Atmos. Chem. Phys, 15, pp. 13097-13112. , https://doi.org/10.5194/acp-15-13097-2015
  • Šácha, P., Lilienthal, F., Jacobi, C., Pišoft, P., Influence of the spatial distribution of gravity wave activity on the middle atwww mospheric dynamics (2016) Atmos. Chem. Phys, 16, pp. 15755-15775. , https://doi.org/10.5194/acp-16-15755-2016
  • Tsuda, T., Nishida, M., Rocken, C., Ware, R.H., A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET (2000) J. Geophys. Res.-Atmos, 105, pp. 7257-7273. , https://doi.org/10.1029/1999JD901005
  • Waugh, D.W., Polvani, L.M., Stratospheric Polar Vortices (2010) American Geophysical Union, 190, pp. 43-57. , https://doi.org/10.1029/2009GM000887, http://pages.jh.edu/dwaugh1/papers/Waugh-Polvani-2010.pdf
  • Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T., Grunwaldt, L., Hocke, K., Atmosphere sounding by GPS radio occultation: First results from CHAMP (2001) Geophys. Res. Lett, 28, pp. 3263-3266. , https://doi.org/10.1029/2001GL013117
  • Wright, C.J., Hindley, N.P., Hoffmann, L., Alexander, M.J., Mitchell, N.J., Satellite measurements of stratospheric gravitywaves over the andes/drake passage region using a 3d s-transform technique (2017) Atmos. Chem. Phys. Discuss, , https://doi.org/10.5194/acp-2017-128, in review

Citas:

---------- APA ----------
Lilienthal, F., Jacobi, C., Schmidt, T., De La Torre, A. & Alexander, P. (2017) . On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation. Annales Geophysicae, 35(4), 785-798.
http://dx.doi.org/10.5194/angeo-35-785-2017
---------- CHICAGO ----------
Lilienthal, F., Jacobi, C., Schmidt, T., De La Torre, A., Alexander, P. "On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation" . Annales Geophysicae 35, no. 4 (2017) : 785-798.
http://dx.doi.org/10.5194/angeo-35-785-2017
---------- MLA ----------
Lilienthal, F., Jacobi, C., Schmidt, T., De La Torre, A., Alexander, P. "On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation" . Annales Geophysicae, vol. 35, no. 4, 2017, pp. 785-798.
http://dx.doi.org/10.5194/angeo-35-785-2017
---------- VANCOUVER ----------
Lilienthal, F., Jacobi, C., Schmidt, T., De La Torre, A., Alexander, P. On the influence of zonal gravity wave distributions on the Southern Hemisphere winter circulation. Ann. Geophys. 2017;35(4):785-798.
http://dx.doi.org/10.5194/angeo-35-785-2017