Artículo

Gazquez, A.; Vilas, J.M.; Colman Lerner, J.E.; Maiale, S.J.; Calzadilla, P.I.; Menéndez, A.B.; Rodríguez, A.A. "Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity" (2018) Plant Physiology and Biochemistry. 127:537-552
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The purpose of this research was to identify differences between two contrasting rice cultivars in their response to suboptimal low temperatures stress. A transcriptomic analysis of the seedlings was performed and results were complemented with biochemical and physiological analyses. The microarray analysis showed downregulation of many genes related with PSII and particularly with the oxygen evolving complex in the sensitive cultivar IR50. Complementary studies indicated that the PSII performance, the degree of oxygen evolving complex coupling with the PSII core and net photosynthetic rate diminished in this cultivar in response to the stress. However, the tolerant cultivar Koshihikari was able to maintain its energy equilibrium by sustaining the photosynthetic capacity. The increase of oleic acid in Koshihikari could be related with membrane remodelling of the chloroplasts and hence contribute to tolerance. Overall, these results work as a ground for future analyses that look forward to characterize possible mechanisms to tolerate this stress. © 2018 Elsevier Masson SAS

Registro:

Documento: Artículo
Título:Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity
Autor:Gazquez, A.; Vilas, J.M.; Colman Lerner, J.E.; Maiale, S.J.; Calzadilla, P.I.; Menéndez, A.B.; Rodríguez, A.A.
Filiación:Laboratorio de Fisiología de Estrés Abiótico en Plantas, Unidad de Biotecnología 1, IIB-INTECH, CONICET, UNSAM, Chascomús, Argentina
Centro de Investigaciones y Desarrollo en Ciencias Aplicadas, FCEx, UNLP, Argentina
Departamento de Biodiversidad y Biología Experimental, FCEyN – UBA, INMIBO-CONICET, Buenos Aires, Argentina
Palabras clave:Cold; Oleate; PSII performance; Rice; Starch; Suboptimal low temperatures; acclimatization; chloroplast; cold; metabolism; Oryza; photosynthesis; photosystem II; physiology; Acclimatization; Chloroplasts; Cold Temperature; Oryza; Photosynthesis; Photosystem II Protein Complex
Año:2018
Volumen:127
Página de inicio:537
Página de fin:552
DOI: http://dx.doi.org/10.1016/j.plaphy.2018.04.035
Título revista:Plant Physiology and Biochemistry
Título revista abreviado:Plant Physiol. Biochem.
ISSN:09819428
CODEN:PPBIE
CAS:Photosystem II Protein Complex
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09819428_v127_n_p537_Gazquez

Referencias:

  • Aghaee, A., Moradi, F., Zare-Maivan, H., Zarinkamar, F., Irandoost, H.P., Sharifi, P., Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage (2011) Afr. J. Biotechnol., 10, pp. 7617-7621
  • Allen, D.J., Ort, D.R., Impacts of chilling temperatures on photosynthesis in warm-climate plants (2001) Trends Plant Sci., 6 (1), pp. 36-42
  • Ariizumi, T., Kishitani, S., Inatsugi, R., Nishida, I., Murata, N., Toriyama, K., An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings (2002) Plant Cell Physiol., 43 (7), pp. 751-758
  • Bajji, M., Kinet, J.M., Lutts, S., The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat (2002) Plant Growth Regul., 36 (1), pp. 61-70
  • Basu, S., Roychoudhury, A., Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance (2014) BioMed Res. Int., 2014, p. 12
  • Basuchaudhuri, P., Cold Tolerance in Rice Cultivation (2014), CRC Press New York, United States of America; Bligh, E.G., Dyer, W.J., A rapid method of total lipid extraction and purification (1959) Can. J. Biochem. Physiol., 37 (8), pp. 911-917
  • Bolhar-Nordenkampf, H.R., Long, S.P., Baker, N.R., Oquist, G., Schreiber, U.L.E.G., Lechner, E.G., Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation (1989) Funct. Ecol., 3, pp. 497-514
  • Bonnecarrère, V., Borsani, O., Díaz, P., Capdevielle, F., Blanco, P., Monza, J., Response to photoxidative stress induced by cold in japonica rice is genotype dependent (2011) Plant Sci., 180 (5), pp. 726-732
  • Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L., BLAST+: architecture and applications (2009) Plant Mol. Biol. Rep., 28 (1), p. 421
  • Cao, P., Jung, K.H., Choi, D., Hwang, D., Zhu, J., Ronald, P.C., The Rice Oligonucleotide Array Database: an atlas of rice gene expression (2012) Rice, 5 (1), p. 17
  • Chen, S., Strasser, R.J., Qiang, S., In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers (2014) Plant Physiol. Biochem., 84, pp. 10-21
  • Cheng, C., Semi-global Analysis of the Early Cold Stress Response Transcriptome of Developing Seedlings of Rice (Oryza Sativa L., Japonica) (2006), The University of Maine Orono, ME, USA 2006; Clayton, S., Neves, P.C., (2011) Country Snapshot, 10, pp. 16-17. , Rice Today Brazil
  • Cox, J., Mann, M., 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data (2012) BMC Bioinf., 13 (16), p. S12
  • Cruz, R.P.D., Golombieski, J.I., Bazana, M.T., Cabreira, C., Silveira, T.F., Silva, L.P.D., Alterations in fatty acid composition due to cold exposure at the vegetative stage in rice (2010) Brazilian Soc. Plant Physiol, 22 (3), pp. 199-207
  • Ensminger, I., Busch, F., Huner, N., Photostasis and cold acclimation: sensing low temperature through photosynthesis (2006) Physiol. Plantarum, 126 (1), pp. 28-44
  • Eremina, M., Rozhon, W., Poppenberger, B., Hormonal control of cold stress responses in plants (2016) Cell. Mol. Life Sci., 73 (4), pp. 797-810
  • Farrell, T.C., Williams, R.L., Fukai, S., The cost of low temperature to the NSW rice industry (2001) Proc. 10th Aust. Agron. Conf, 28, pp. 1300-1430
  • Gazquez, A., Maiale, S.J., Rachoski, M.M., Vidal, A., Ruiz, O., Menéndez, A.B., Rodríguez, A.A., Physiological response of multiple contrasting rice (Oryza sativa L.) cultivars to suboptimal temperatures (2015) J. Agron. Crop Sci., 2015 (2), pp. 117-127
  • Gururani, M.A., Venkatesh, J., Ganesan, M., Strasser, R.J., Han, Y., Kim, J.I., Lee, H.Y., Hofmann, N.R., Alternative splicing links the circadian clock to cold tolerance (2012) Plant Cell, 24, p. 2238
  • Huang, M., Guo, Z., Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity (2005) Biol. Plant, 49 (1), pp. 81-84
  • Huner, N.P., Öquist, G., Sarhan, F., Energy balance and acclimation to light and cold (1998) Trends Plant Sci., 3 (6), pp. 224-230
  • Iba, K., Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance (2002) Annu. Rev. Plant Biol., 53 (1), pp. 225-245
  • Ichihara, K.I., Fukubayashi, Y., Preparation of fatty acid methyl esters for gas-liquid chromatography (2010) J. Lipid Res., 51 (3), pp. 635-640
  • Imin, N., Kerim, T., Weinman, J.J., Rolfe, B.G., Low temperature treatment at the young microspore stage induces protein changes in rice anthers (2006) Mol. Cell. Proteomics, 5 (2), pp. 274-292
  • IRRI, World Rice Statistics (2013), http://ricestat.irri.org:8080/wrs; Ishida, S., Morita, K.I., Kishine, M., Takabayashi, A., Murakami, R., Takeda, S., Shimamoto, K., Endo, T., Allocation of absorbed light energy in PSII to thermal dissipations in the presence or absence of PsbS subunits of rice (2011) Plant Cell Physiol., 52 (10), pp. 1822-1831
  • Jackson, S.A., Rice: the first crop Genome (2016) Rice, 9 (1), pp. 1-3
  • Jain, M., Khurana, J.P., Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice (2009) FEBS J., 276 (11), pp. 3148-3162
  • Jain, M., Kaur, N., Garg, R., Thakur, J.K., Tyagi, A.K., Khurana, J.P., Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa) (2006) Funct. Integr. Genom., 6 (1), pp. 47-59
  • Jain, M., Ghanashyam, C., Bhattacharjee, A., Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses (2010) BMC Genom., 11 (1), p. 73
  • Jambunathan, N., Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants (2010) Plant stress tolerance: methods and protocols, pp. 291-297
  • Kabaki, N., Physiological analysis of growth retardation of rice seedlings caused by low temperature (1983) Jpn. Agric. Res. Q., 17, pp. 161-165
  • Kobayashi, T., Suzuki, M., Inoue, H., Itai, R.N., Takahashi, M., Nakanishi, H., Mori, S., Nishizawa, N.K., Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements (2005) J. Exp. Bot., 56 (415), pp. 1305-1316
  • Li, Q.F., Sun, S.S., Yuan, D.Y., Yu, H.X., Gu, M.H., Liu, Q.Q., Validation of candidate reference genes for the accurate normalization of real-time quantitative RT-PCR data in rice during seed development (2010) Plant Mol. Biol. Rep., 28 (1), pp. 49-57
  • Liscum, E., Reed, J.W., Genetics of Aux/IAA and ARF action in plant growth and development (2002) Plant Mol. Biol., 49 (3), pp. 387-400
  • Liu, H., Frankel, L.K., Bricker, T.M., Characterization and complementation of a psbR mutant in Arabidopsis thaliana (2009) Arch. Biochem. Biophys., 489 (1), pp. 34-40
  • Lyzenga, W.J., Stone, S.L., Protein ubiquitination: an emerging theme in plant abiotic stress tolerance (2011) Am. J. Plant Sci. Biotechnol., 52, pp. 1-11
  • Maeda, S., Cold tolerance at seedling stage in Japonica rice varieties. 7. Relationship of cold tolerance with temperature reaction of fatty-acid composition (1999) Breed. Res. suppl., 2, p. 86
  • Malone, J.H., Oliver, B., Microarrays, deep sequencing and the true measure of the transcriptome (2011) BMC Biol., 9 (1), p. 34
  • Menéndez, A., Rodríguez, A., Maiale, S., Rodríguez Kessler, M., Jimenez Bremont, J., Ruiz, O., Polyamines contribution to the improvement of crop plants tolerance to abiotic stress (2013) Crop Improv. Under Advers. Cond, pp. 113-136. , N. Tuteja S. Gill Springer New York, USA
  • Mittler, R., Abiotic stress, the field environment and stress combination (2006) Trends Plant Sci., 11 (1), pp. 15-19
  • Miura, K., Furumoto, T., Cold signaling and cold response in plants (2013) Int. J. Mol. Sci., 14 (3), pp. 5312-5337
  • Morsy, M.R., Jouve, L., Hausman, J.F., Hoffmann, L., Stewart, J.M., Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance (2007) J. Plant Physiol., 164 (2), pp. 157-167
  • Murakami, M., Ashikari, M., Miura, K., Yamashino, T., Mizuno, T., The evolutionarily conserved Os PRR quintet: rice pseudo-response regulators implicated in circadian rhythm (2003) Plant Cell Physiol., 44 (11), pp. 1229-1236
  • Nishizawa, A., Yabuta, Y., Shigeoka, S., Galactinol and raffinose constitute a novel function to protect plants from oxidative damage (2008) Plant Physiol., 147 (3), pp. 1251-1263
  • Nuruzzaman, M., Sharoni, A.M., Kikuchi, S., Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants (2013) Front. Microbiol., 4, pp. 1-16
  • Oliveira, G., Peñuelas, J., Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L (2005) Plant Ecol., 175 (2), pp. 179-191
  • Öquist, G., Huner, N.P., Cold-hardening-induced resistance to photoinhibition of photosynthesis in winter rye is dependent upon an increased capacity for photosynthesis (1993) Planta, 189 (1), pp. 150-156
  • Pagter, M., Liu, F., Jensen, C.R., Petersen, K., Effects of chilling temperatures and short photoperiod on PSII function, sugar concentrations and xylem sap ABA concentrations in two Hydrangea species (2008) Plant Sci., 175, pp. 547-555
  • Park, S.H., Chung, P.J., Juntawong, P., Bailey-Serres, J., Kim, Y.S., Jung, H., Bang, S.W., Kim, J.K., Posttranscriptional control of photosynthetic mRNA decay under stress conditions requires 3′ and 5′ untranslated regions and correlates with differential polysome association in rice (2012) Plant Physiol., 159 (3), pp. 1111-1124
  • Peng, S., Ismail, A., Physiological basis of yield and environmental adaptation in rice (2004) Physiol. Biochem. Integr. Plant Breed, pp. 83-140. , H. Nguyen A. Blum Marcel Dekker New York
  • Pennycooke, J.C., Jones, M.L., Stushnoff, C., Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia (2003) Plant Physiol., 133 (2), pp. 901-909
  • Peoples, T.R., Koch, D.W., Smith, S.C., Relationship between chloroplast membrane fatty acid composition and photosynthetic response to a chilling temperature in four alfalfa cultivars (1978) Plant Physiol., 61 (3), pp. 472-473
  • Ping, W., Chengjun, Z., Guoxiang, C., Effects of low temperature on lipid peroxidation and fatty acid composition of flag leaf in rice (Oryza sativa L.) (2006) Acta Agron. Sin., 32, pp. 568-572
  • Quintero, C, C., Factores limitantes para el crecimiento y productividadd del arroz en Entre Ríos (2009), Universidade da Coruña Argentina; Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Yamaguchi-Shinozaki, K., Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses (2003) Plant Physiol., 133 (4), pp. 1755-1767
  • Rapacz, M., Wolanin, B., Hura, K., Tyrka, M., The effects of cold acclimation on photosynthetic apparatus and the expression of COR14b in four genotypes of barley (Hordeum vulgare) contrasting in their tolerance to freezing and high-light treatment in cold conditions (2008) Ann. Bot., 101 (5), pp. 689-699
  • Renaut, J., Hoffmann, L., Hausman, J.F., Biochemical and physiological mechanisms related to cold acclimation and enhancing freezing tolerance in poplar plantlets (2005) Physiol. Plantarum, 125, pp. 82-94
  • Routaboul, J.M., Fischer, S.F., Trienoic fatty acids are required to maintain chloroplast function at low Temperatures1 (2000) Plant Physiol., 124, pp. 1697-1705
  • Saito, M., Yoshida, M., Expression analysis of the gene family associated with raffinose accumulation in rice seedlings under cold stress (2011) J. Plant Physiol., 168 (18), pp. 2268-2271
  • Seidler, A., The extrinsic polypeptides of photosystem II (1996) Biochim. Biophys. Acta - Bioenerg, 1277 (1), pp. 35-60
  • Sengupta, S., Mukherjee, S., Basak, P., Majumder, A.L., Significance of galactinol and raffinose family oligosaccharide synthesis in plants (2015) Front. Plant Sci., 6, pp. 1-11
  • Seo, P.J., Mas, P., STRESSing the role of the plant circadian clock (2015) Trends Plant Sci., 20 (4), pp. 230-237
  • Sharma, D.K., Andersen, S.B., Ottosen, C.O., Rosenqvist, E., Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter (2015) Physiol. Plantarum, 153 (2), pp. 284-298
  • Shimono, H., Okada, M., Kanda, E., Arakawa, I., Low temperature-induced sterility in rice: evidence for the effects of temperature before panicle initiation (2007) Field Crop. Res., 101 (2), pp. 221-231
  • Shimosaka, E., Ozawa, K., Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice (2015) Breed Sci., 65 (5), pp. 363-371
  • Singh, R., Brennan, J.P., Farrell, T., Williams, R., Lewin, L., Mullen, J., Economic analysis of improving cold tolerance in rice in Australia (2005) Australas. Agribus. Rev., 13, pp. 1-9
  • Singh, A., Kanwar, P., Yadav, A.K., Mishra, M., Jha, S.K., Baranwal, V., Pandey, A., Pandey, G.K., Genome-wide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice (2014) FEBS J., 281 (3), pp. 894-915
  • Smith, A.M., Stitt, M., Coordination of carbon supply and plant growth (2007) Plant, Cell Environ, 30 (9), pp. 1126-1149
  • Solanke, A.U., Sharma, A.K., Signal transduction during cold stress in plants (2008) Physiol. Mol. Biol. Plants, 14 (1-2), pp. 69-79
  • Strasser, R.J., Srivastava, A., Tsimilli-Michael, M., The fluorescence transient as a tool to characterize and screen photosynthetic samples (2000) Probing Photosynth. Mech. Regul. Adapt, pp. 445-483. , Taylor and Francise
  • Strasser, R.J., Srivastava, A., Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria (1995) Photochem. Photobiol., 61 (1), pp. 32-42
  • Suorsa, M., Sirpiö, S., Allahverdiyeva, Y., Paakkarinen, V., Mamedov, F., Styring, S., Aro, E.M., PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II (2006) J. Biol. Chem., 281 (1), pp. 145-150
  • Takanashi, J., Maruyama, S., Kabaki, N., Tajima, K., Temperature dependency of protein synthesis by cell-free system constructed with polysomes from rice radicle (1987) Jpn. J. Crop Sci., 56, pp. 44-50
  • Tarkowski, Ł.P., Van den Ende, W., Cold tolerance triggered by soluble sugars: a multifaceted countermeasure (2015) Front. Plant Sci., 6, pp. 1-7
  • Tello-Ruiz, M.K., Stein, J., Wei, S., Preece, J., Olson, A., Naithani, S., Amarasinghe, V., Ware, D., Gramene 2016: comparative plant genomics and pathway resources (2015) Nucleic Acids Res., 44 (D1), pp. D1133-D1140
  • Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G., Primer3—new capabilities and interfaces (2012) Nucleic Acids Res., 40 (15). , e115–e115
  • Upchurch, R.G., Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress (2008) Biotechnol. Lett., 30 (6), pp. 967-977
  • Vanneste, S., Friml, J., Plant signaling: deconstructing auxin sensing (2012) Nat. Chem. Biol., 8 (5), pp. 415-416
  • Wang, J., Zhang, C.J., Chen, G.X., Wang, P., Shi, D.W., Lu, C.G., Responses of photosynthetic functions to low temperature in flag leaves of rice genotypes at the milky stage (2006) Rice Sci., 13, pp. 113-119
  • Wang, L., Li, P., Brutnell, T.P., Exploring plant transcriptomes using ultra high-throughput sequencing (2010) Brief. Funct. Genomics, 9 (2), pp. 118-128
  • Wang, J.M., Lin, X.Y., Sun, Q., Jena, K.K., Evaluation of cold tolerance for japonica rice varieties from different country (2013) Adv. J. Food Sci. Technol., 5, pp. 54-56
  • Wang, W., Chen, Q., Hussain, S., Mei, J., Dong, H., Peng, S., Huang, J., Nie, L., Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress (2016) Sci. Rep., 6, p. 19637
  • Xia, J., Li, Y., Zou, D., Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements (2004) Aquat. Bot., 80 (2), pp. 129-137
  • Yoshida, S., Forno, D., Cock, J., Kwanchai, G., Laboratory Manual for Physiological Studies of Rice (1976), third ed. Int. Rice Res. Inst. Los Baños Laguna, Philippines; Yoshida, S., Fundamentals of Rice Crop Science (1981), IRRI Los Baños, Laguna, Philippines; Yu, J., Wang, J., Lin, W., Li, S., Li, H., Zhou, J., Ni, P., Yang, H., The genomes of Oryza sativa: a history of duplications (2005) PLoS Biol., 3 (2), p. e38
  • Yusuf, M.A., Kumar, D., Rajwanshi, R., Strasser, R.J., Tsimilli-Michael, M., Sarin, N.B., Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements (2010) Biochim. Biophys. Acta Bioenerg., 1797 (8), pp. 1428-1438
  • Zhang, T., Zhao, X., Wang, W., Pan, Y., Huang, L., Liu, X., Zong, Y., Fu, B., Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes (2012) PLoS One, 7 (8)
  • Zhu, S.Q., Yu, C.M., Liu, X.Y., Ji, B.H., Jiao, D.M., Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice (2007) J. Integr. Plant Biol., 49 (4), pp. 463-471
  • Żurek, G., Rybka, K., Pogrzeba, M., Krzyżak, J., Prokopiuk, K., Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses (2014) PLoS One, 9 (3)

Citas:

---------- APA ----------
Gazquez, A., Vilas, J.M., Colman Lerner, J.E., Maiale, S.J., Calzadilla, P.I., Menéndez, A.B. & Rodríguez, A.A. (2018) . Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity. Plant Physiology and Biochemistry, 127, 537-552.
http://dx.doi.org/10.1016/j.plaphy.2018.04.035
---------- CHICAGO ----------
Gazquez, A., Vilas, J.M., Colman Lerner, J.E., Maiale, S.J., Calzadilla, P.I., Menéndez, A.B., et al. "Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity" . Plant Physiology and Biochemistry 127 (2018) : 537-552.
http://dx.doi.org/10.1016/j.plaphy.2018.04.035
---------- MLA ----------
Gazquez, A., Vilas, J.M., Colman Lerner, J.E., Maiale, S.J., Calzadilla, P.I., Menéndez, A.B., et al. "Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity" . Plant Physiology and Biochemistry, vol. 127, 2018, pp. 537-552.
http://dx.doi.org/10.1016/j.plaphy.2018.04.035
---------- VANCOUVER ----------
Gazquez, A., Vilas, J.M., Colman Lerner, J.E., Maiale, S.J., Calzadilla, P.I., Menéndez, A.B., et al. Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity. Plant Physiol. Biochem. 2018;127:537-552.
http://dx.doi.org/10.1016/j.plaphy.2018.04.035