Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Plastic scintillators are widely used as particle detectors in many fields, mainly, medicine, particle physics and astrophysics. Traditionally, they are coupled to a photo-multiplier (PMT) but now silicon photo-multipliers (SiPM) are evolving as a promising robust alternative, specially in space born experiments since plastic scintillators may be a light option for low Earth orbit missions. Therefore it is timely to make a new analysis of the optimal design for experiments based on plastic scintillators in realistic conditions in such a configuration. We analyze here their response to an isotropic flux of electron and proton primaries in the energy range from 1 MeV to 1 GeV, a typical scenario for cosmic ray or space weather experiments, through detailed GEANT4 simulations. First, we focus on the effect of increasing the ratio between the plastic volume and the area of the photo-detector itself and, second, on the benefits of using a reflective coating around the plastic, the most common technique to increase light collection efficiency. In order to achieve a general approach, it is necessary to consider several detector setups. Therefore, we have performed a full set of simulations using the highly tested GEANT4 simulation tool: several parameters have been analyzed such as the energy lost in the coating, the deposited energy in the scintillator, the optical absorption, the fraction of scintillation photons that are not detected, the light collection at the photo-detector, the pulse shape and its time parameters and finally, other design parameters as the surface roughness, the coating reflectivity and the case of a scintillator with two decay components. This work could serve as a guide on the design of future experiments based on the use of plastic scintillators. © 2018 Elsevier Ltd

Registro:

Documento: Artículo
Título:On the design of experiments based on plastic scintillators using GEANT4 simulations
Autor:Ros, G.; Sáez-Cano, G.; Medina-Tanco, G.A.; Supanitsky, A.D.
Filiación:Dpto. Física y Matemáticas, Universidad de Alcalá, Alcalá de Henares, Spain
Instituto de Ciencias Nucleares, UNAM, México D. F., Mexico
Instituto de Astronomía y Física del Espacio, CONICET-UBA, Buenos Aires, Argentina
Palabras clave:Coating; Efficiency; Geant4 simulations; Plastic scintillator; Pulses; Coatings; Cosmic rays; Cosmology; Design of experiments; Earth (planet); Efficiency; High energy physics; Ionization; Light; Light absorption; Orbits; Photodetectors; Photomultipliers; Reflective coatings; Scintillation counters; Surface roughness; Design parameters; GEANT4 simulation; Light collection efficiency; Plastic scintillator; Pulses; Realistic conditions; Scintillation photons; Silicon photo multipliers (SiPM); Plastic coatings; plastic; Article; cosmic radiation; decay time constant; electron transport; energy transfer; experimental design; light; material coating; photon; proton transport; radiation absorption; radiation physics; refraction index; scintigraphy; scintillation; signal detection; simulation; surface property; time
Año:2018
Volumen:153
Página de inicio:140
Página de fin:151
DOI: http://dx.doi.org/10.1016/j.radphyschem.2018.09.021
Título revista:Radiation Physics and Chemistry
Título revista abreviado:Radiat. Phys. Chem.
ISSN:0969806X
CODEN:RPCHD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0969806X_v153_n_p140_Ros

Referencias:

  • Adamson, P., (1998) Technical Design Report. FERMILAB-DESIGN-1998-02 Experiment: FNAL-E-0875 NuMI-L-337
  • Agostinelli, S., Geant4 simulation toolkit (2003) Nucl. Instrum. Methods Phys. Res. A, 506-3, pp. 250-303
  • Alfaro, R., Buried plastic scintillator muon telescope (BATATA) (2010) Nucl. Instrum. Methods Phys. Res. A, 617, pp. 511-514
  • Aliaga, L., Design, calibration, and performance of the MINERVA detector (2014) Nucl. Instrum. Methods Phys. Res. A, 743, pp. 130-159
  • Archambault, L., Plastic scintillation dosimetry: optimal selection of scintillating fibers and scintillators (2005) Med. Phys., 32, pp. 2271-2278
  • Beddar, A.S., Mackie, T.R., Attix, F.H., Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: i. Physical characteristics and theoretical consideration (1992) Phys. Med. Biol., 37 (10), pp. 900-1883
  • http://chemandy.com/calculators/skin-effect-calculator.htm, Calculator for Skin Effect Depth. 〈〉; CMS Collaboration, (1997) Technical Design Report (CERN/LHCC97-31)
  • DAMPE Collaboration, The plastic scintillator detector for DAMPE (2017) Astropart. Phys., 94, pp. 1-10
  • Dietz-Laursonn, E., (2016) Detailed Studies of Light Transport in Optical Components of Particle Detectors (Diplom-Thesis), , http://publications.rwth-aachen.de/record/667646/files/667646.pdf, (Available at 〈〉)
  • von Doetinchem, P., The AMS-02 anticoincidence counter (2009) Nucl. Phys. B (Proc. Suppl.), 197, pp. 15-18. , arxiv.org/abs/0811.4314, (〈〉)
  • Dyshkant, A., (2006), 867. , Extruded scintillator for the calorimetry applications. In: AIP Conference Proceedings, 513; Espirito-Santo, M.C., Applications of GEANT4 in astroparticle experiments (2004) IEEE Trans. Nucl. Sci., 51 (4)
  • Galloway, R.B., Savalooni, H., The dependence on scintillator size of the response of NE213 to electrons and protons (1982) Nucl. Instrum. Methods, 199, pp. 549-555
  • Ghal-Eh, N., Light transport contribution to the timing characteristics of scintillation detectors (2011) Radiat. Phys. Chem., 80, pp. 365-368
  • Guimaraes, C.C., Performance of GEANT4 in dosimetry applications (2008) Radiat. Meas., 43 (9-10), pp. 1525-1531
  • Hogstrom, K.R., Almond, P.R., Review of electron beam therapy physics (2006) Phys. Med. Biol., 51, p. 13
  • Kharzheev, Y.N., Scintillation counters in modern high energy physics experiments (review) (2015) Phys. Part. Nucl., 46 (4), pp. 678-728
  • Kikawa, T., (2015) Measurement of Neutrino Interactions and Three Flavor Neutrino Oscillations in the T2K Experiment (Ph.D. Thesis), , http://inspirehep.net/record/1358454/files/kikawa_thesis.pdf, (Available at 〈〉)
  • Kohley, Z., Modeling interactions of intermediate-energy neutrons in a plastic scintillator array with GEANT4 (2012) Nucl. Instrum. Methods Phys. Res. A, 682, pp. 59-65
  • Li-Ming, Z., Simulation study for a single TOF scintillator using GEANT4 (2004) Meas. Sci. Technol., 15
  • Lo Meo, S., A Geant4 simulation code for simulating optical photons in SPECT scintillation detectors (2009) JINST, 4, p. P07002
  • Newhauser, W.D., Zhang, R., The physics of proton therapy (2015) Phys. Med. Biol., 60 (8)
  • OPERA Collaboration, (2000) Experiment Proposal (CERN/SPSC2000-028, CERN-SPSC-P318, LNGS-P25-00)
  • Owens, A., Scintillators on interplanetary space missions (2008) 1430 IEEE Trans. Nucl. Sci., 55 (3)
  • Plau-Dalmau, A., (2005), pp. 35-25. , Extruded plastic scintillator for MINERVA. In: Proceedings of the IEEE Nuclear Science Symposium Conference, Record N; Plau-Dalmau, Anna, et al. Extruded plastic scintillation detectors. In: Proceedings of the FERMILAB-Conf-99/095. arXiv:physics/9904004; Riggi, GEANT4 simulation of plastic scintillator strips with embedded optical fibers for a prototype of tomographic system (2010) Nucl. Instrum. Methods Phys. Res. A, 624, pp. 583-590
  • https://www.spenvis.oma.be/, ESA's SPace ENVironment Information System. 〈〉; Supanitsky, A.D., Underground Muon counters as a tool for composition analyses (2008) Astropart. Phys., 29, pp. 461-470
  • Taheri, A., Peyvandi, R.G., The impact of wrapping method and reflector type on the performance of rod plastic scintillators (2017) Measurement, 97, pp. 100-110
  • The Pierre Auger Collaboration. The Pierre Auger Observatory Upgrade – Preliminary Design Report. 〈〉. arxiv.org/1604.03637; Torrisi, L., Plastic scintillator investigations for relative dosimetry in proton-therapy (2000) Nucl. Instrum. Methods Phys. Res. B, 170, pp. 523-530
  • Zhu, J., Preparation and characterization of a novel UV-curable plastic scintillator (2016) Nucl. Instrum. Methods Phys. Res. A, 817, pp. 30-34
  • Zhu, J., The impact of fluorescent dyes on the performances of polystyrene-based plastic scintillators (2016) Nucl. Instrum. Methods Phys. Res. A, 835, pp. 136-141

Citas:

---------- APA ----------
Ros, G., Sáez-Cano, G., Medina-Tanco, G.A. & Supanitsky, A.D. (2018) . On the design of experiments based on plastic scintillators using GEANT4 simulations. Radiation Physics and Chemistry, 153, 140-151.
http://dx.doi.org/10.1016/j.radphyschem.2018.09.021
---------- CHICAGO ----------
Ros, G., Sáez-Cano, G., Medina-Tanco, G.A., Supanitsky, A.D. "On the design of experiments based on plastic scintillators using GEANT4 simulations" . Radiation Physics and Chemistry 153 (2018) : 140-151.
http://dx.doi.org/10.1016/j.radphyschem.2018.09.021
---------- MLA ----------
Ros, G., Sáez-Cano, G., Medina-Tanco, G.A., Supanitsky, A.D. "On the design of experiments based on plastic scintillators using GEANT4 simulations" . Radiation Physics and Chemistry, vol. 153, 2018, pp. 140-151.
http://dx.doi.org/10.1016/j.radphyschem.2018.09.021
---------- VANCOUVER ----------
Ros, G., Sáez-Cano, G., Medina-Tanco, G.A., Supanitsky, A.D. On the design of experiments based on plastic scintillators using GEANT4 simulations. Radiat. Phys. Chem. 2018;153:140-151.
http://dx.doi.org/10.1016/j.radphyschem.2018.09.021