Artículo

Ferrando, M.; Gueron, G.; Elguero, B.; Giudice, J.; Salles, A.; Leskow, F.C.; Jares-Erijman, E.A.; Colombo, L.; Meiss, R.; Navone, N.; De Siervi, A.; Vazquez, E. "Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer" (2011) Angiogenesis. 14(4):467-479
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Prostate cancer (PCa) is the second leading cause of cancer-associated death in men. Once a tumor is established it may attain further characteristics via mutations or hypoxia, which stimulate new blood vessels. Angiogenesis is a hallmark in the pathogenesis of cancer and inflammatory diseases that may predispose to cancer. Heme oxygenase-1 (HO-1) counteracts oxidative and inflammatory damage and was previously reported to play a key role in prostate carcinogenesis. To gain insight into the anti-tumoral properties of HO-1, we investigated its capability to modulate PCa associated-angiogenesis. In the present study, we identified in PC3 cells a set of inflammatory and pro-angiogenic genes down-regulated in response to HO-1 overexpression, in particular VEGFA, VEGFC, HIF1α and α5β1 integrin. Our results indicated that HO-1 counteracts oxidative imbalance reducing ROS levels. An in vivo angiogenic assay showed that intradermal inoculation of PC3 cells stable transfected with HO-1 (PC3HO-1) generated tumours less vascularised than controls, with decreased microvessel density and reduced CD34 and MMP9 positive staining. Interestingly, longer term grown PC3HO-1 xenografts displayed reduced neovascularization with the subsequent down-regulation of VEGFR2 expression. Additionally, HO-1 repressed nuclear factor κB (NF-κB)-mediated transcription from an NF-κB responsive luciferase reporter construct, which strongly suggests that HO-1 may regulate angiogenesis through this pathway. Taken together, these data supports a key role of HO-1 as a modulator of the angiogenic switch in prostate carcinogenesis ascertaining it as a logical target for intervention therapy. © 2011 Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer
Autor:Ferrando, M.; Gueron, G.; Elguero, B.; Giudice, J.; Salles, A.; Leskow, F.C.; Jares-Erijman, E.A.; Colombo, L.; Meiss, R.; Navone, N.; De Siervi, A.; Vazquez, E.
Filiación:Department of Biological Chemistry, School of Sciences, University of Buenos Aires, 2do Piso, Buenos Aires 1428, Argentina
Department of Organic Chemistry, School of Sciences, Ciudad Universitaria, 2do Piso, Buenos Aires 1428, Argentina
Research Area, Inst of Oncology A.H.Roffo, University of Buenos Aires, Buenos Aires, Argentina
Department of Pathology, Institute of Oncological Studies, National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina
Department of Genitourinary Medical Oncology, University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States
Palabras clave:Angiogenesis; Heme oxygenase 1 (HO-1); NF-κB; Prostate cancer; VEGF; CD34 antigen; gelatinase B; heme oxygenase 1; hypoxia inducible factor 1alpha; immunoglobulin enhancer binding protein; reactive oxygen metabolite; vasculotropin A; vasculotropin C; vasculotropin receptor 2; very late activation antigen 5; animal experiment; animal model; animal tissue; article; controlled study; gene expression regulation; gene overexpression; genetic transfection; heme oxygenase 1 gene; in vivo study; male; microvasculature; mouse; nonhuman; oxidative stress; priority journal; prostate cancer; receptor down regulation; signal transduction; transcription regulation; tumor gene; tumor vascularization; Analysis of Variance; Animals; DNA Primers; Gene Expression Regulation, Neoplastic; Heme Oxygenase-1; Histological Techniques; Humans; Immunohistochemistry; Luciferases; Male; Mice; Mice, Nude; Neovascularization, Pathologic; Plasmids; Prostatic Neoplasms; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor C
Año:2011
Volumen:14
Número:4
Página de inicio:467
Página de fin:479
DOI: http://dx.doi.org/10.1007/s10456-011-9230-4
Título revista:Angiogenesis
Título revista abreviado:Angiogenesis
ISSN:09696970
CODEN:AGIOF
CAS:gelatinase B, 146480-36-6; vasculotropin A, 489395-96-2; vasculotropin C, 171342-42-0, 185969-81-7; DNA Primers; HMOX1 protein, human, 1.14.99.3; Heme Oxygenase-1, 1.14.99.3; Luciferases, 1.13.12.-; Reactive Oxygen Species; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor C
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09696970_v14_n4_p467_Ferrando

Referencias:

  • Ushio-Fukai, M., Nakamura, Y., Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy (2008) Cancer Letters, 266 (1), pp. 37-52. , DOI 10.1016/j.canlet.2008.02.044, PII S0304383508001432
  • Hiratsuka, S., Vasculogenensis, angiogenesis and special features of tumor blood vessels (2011) Front Biosci, 16, pp. 1413-1427. , 21196239 10.2741/3796 1:CAS:528:DC%2BC3MXisVylsLk%3D
  • Mohamedali, K.A., Li, Z.G., Starbuck, M.W., Wan, X., Yang, J., Kim, S., Zhang, W., Navone, N.M., Inhibition of prostate cancer osteoblastic progression with VEGF121/rGel, a single agent targeting osteoblasts, osteoclasts, and tumor neovasculature (2011) Clin Cancer Res, 17 (8), pp. 2328-2338. , 21343372 10.1158/1078-0432.CCR-10-2943 1:CAS:528:DC%2BC3MXkslCgtr4%3D
  • Bussolati, B., Ahmed, A., Pemberton, H., Landis, R.C., Di Carlo, F., Haskard, D.O., Mason, J.C., Bifunctional role for VEGF-induced heme oxygenase-1 in vivo: Induction of angiogenesis and inhibition of leukocytic infiltration (2004) Blood, 103 (3), pp. 761-766. , DOI 10.1182/blood-2003-06-1974
  • Jozkowicz, A., Was, H., Dulak, J., Heme oxygenase-1 in tumors: Is it a false friend? (2007) Antioxidants and Redox Signaling, 9 (12), pp. 2099-2117. , DOI 10.1089/ars.2007.1659
  • Wegiel, B., Chin, B.Y., Otterbein, L.E., Inhale to survive, cycle or die? Carbon monoxide and cellular proliferation (2008) Cell Cycle, 7 (10), pp. 1379-1384. , http://www.landesbioscience.com/journals/cc/article/WegielCC7-10.pdf
  • Dulak, J., Deshane, J., Jozkowicz, A., Agarwal, A., Heme oxygenase-1 and carbon monoxide in vascular pathobiology: Focus on angiogenesis (2008) Circulation, 117 (2), pp. 231-241. , 18195184 10.1161/CIRCULATIONAHA.107.698316 1:CAS:528:DC%2BD1cXmsF2m
  • De Marzo, A.M., Platz, E.A., Sutcliffe, S., Xu, J., Gronberg, H., Drake, C.G., Nakai, Y., Nelson, W.G., Inflammation in prostate carcinogenesis (2007) Nature Reviews Cancer, 7 (4), pp. 256-269. , DOI 10.1038/nrc2090, PII NRC2090
  • Finger, E.C., Giaccia, A.J., Hypoxia, inflammation, and the tumor microenvironment in metastatic disease (2010) Cancer Metastasis Rev, 29 (2), pp. 285-293. , 20393783 10.1007/s10555-010-9224-5 1:CAS:528:DC%2BC3cXlslWgtrg%3D
  • Folkman, J., Angiogenesis: An organizing principle for drug discovery? (2007) Nature Reviews Drug Discovery, 6 (4), pp. 273-286. , DOI 10.1038/nrd2115, PII NRD2115
  • Huss, W.J., Hanrahan, C.F., Barrios, R.J., Simons, J.W., Greenberg, N.M., Angiogenesis and prostate cancer: Identification of a molecular progression switch (2001) Cancer Research, 61 (6), pp. 2736-2743
  • Jodele, S., Blavier, L., Yoon, J.M., DeClerck, Y.A., Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression (2006) Cancer and Metastasis Reviews, 25 (1), pp. 35-43. , DOI 10.1007/s10555-006-7887-8, Metalloproteinases and Cancer
  • Sacca, P., Meiss, R., Casas, G., Mazza, O., Calvo, J.C., Navone, N., Vazquez, E., Nuclear translocation of haeme oxygenase-1 is associated to prostate cancer (2007) British Journal of Cancer, 97 (12), pp. 1683-1689. , DOI 10.1038/sj.bjc.6604081, PII 6604081
  • Li, Y., Su, J., Dingzhang, X., Zhang, J., Yoshimoto, M., Liu, S., Bijian, K., Bismar, T.A., PTEN deletion and heme oxygenase-1 overexpression cooperate in prostate cancer progression and are associated with adverse clinical outcome (2011) J Pathol, 224 (1), pp. 90-100. , 21381033 10.1002/path.2855 1:CAS:528:DC%2BC3MXksVKhsbg%3D
  • Gueron, G., De Siervi, A., Ferrando, M., Salierno, M., De Luca, P., Elguero, B., Meiss, R., Vazquez, E.S., Critical role of endogenous heme oxygenase 1 as a tuner of the invasive potential of prostate cancer cells (2009) Mol Cancer Res, 7 (11), pp. 1745-1755. , 19903769 10.1158/1541-7786.MCR-08-0325 1:CAS:528:DC%2BD1MXhsVamsr%2FL
  • Mira, E., Lacalle, R.A., Buesa, J.M., Gonzalez De Buitrago, G., Jimenez-Baranda, S., Gomez-Mouton, C., Martinez-A, C., Manes, S., Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface (2004) Journal of Cell Science, 117 (9), pp. 1847-1856. , DOI 10.1242/jcs.01035
  • Kong, D., Li, Y., Wang, Z., Banerjee, S., Sarkar, F.H., Inhibition of angiogenesis and invasion by 3,3′-diindolylmethane is mediated by the NF-κB downstream target genes MMP-9 and uPA that regulated bioavailability of VEGF in prostate cancer (2007) Cancer Research, 67 (7), pp. 3310-3319. , DOI 10.1158/0008-5472.CAN-06-4277
  • Akalu, A., Cretu, A., Brooks, P.C., Targeting integrins for the control of tumour angiogenesis (2005) Expert Opinion on Investigational Drugs, 14 (12), pp. 1475-1486. , DOI 10.1517/13543784.14.12.1475
  • Eliceiri, B.P., Integrin and growth factor receptor crosstalk (2001) Circulation Research, 89 (12), pp. 1104-1110
  • Rankin, E.B., Giaccia, A.J., The role of hypoxia-inducible factors in tumorigenesis (2008) Cell Death and Differentiation, 15 (4), pp. 678-685. , DOI 10.1038/cdd.2008.21, PII CDD200821, The biology of Hypoxia-inducible factors
  • Tuomela, J., Valta, M., Seppanen, J., Tarkkonen, K., Vaananen, H.K., Harkonen, P., Overexpression of vascular endothelial growth factor C increases growth and alters the metastatic pattern of orthotopic PC-3 prostate tumors (2009) BMC Cancer, 9, p. 362. , 19821979 10.1186/1471-2407-9-362
  • Joseph, I.B.J.K., Nelson, J.B., Denmeade, S.R., Isaacs, J.T., Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue (1997) Clinical Cancer Research, 3, pp. 2507-2511. , 12 I
  • Davel, L.E., Rimmaudo, L., Espanol, A., De La Torre, E., Jasnis, M.A., Laura Ribeiro, M., Gotoh, T., Sales, M.E., Different mechanisms lead to the angiogenic process induced by three adenocarcinoma cell lines (2004) Angiogenesis, 7 (1), pp. 45-51. , DOI 10.1023/B:AGEN.0000037329.45326.a8
  • Liu, S.F., Malik, A.B., NF-κB activation as a pathological mechanism of septic shock and inflammation (2006) American Journal of Physiology - Lung Cellular and Molecular Physiology, 290 (4), pp. L622-L645. , http://ajplung.physiology.org/cgi/reprint/290/4/L622.pdf, DOI 10.1152/ajplung.00477.2005
  • Shukla, S., MacLennan, G.T., Marengo, S.R., Resnick, M.I., Gupta, S., Constitutive activation of PI3K-Akt and NF-κB during prostate cancer progression in autochthonous transgenic mouse model (2005) Prostate, 64 (3), pp. 224-239. , DOI 10.1002/pros.20217
  • Suh, J., Payvandi, F., Edelstein, L.C., Amenta, P.S., Zong, W.-X., Gelinas, C., Rabson, A.B., Mechanisms of constitutive NF-κB activation in human prostate cancer cells (2002) Prostate, 52 (3), pp. 183-200. , DOI 10.1002/pros.10082
  • Holmes, K., Roberts, O.L., Thomas, A.M., Cross, M.J., Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition (2007) Cellular Signalling, 19 (10), pp. 2003-2012. , DOI 10.1016/j.cellsig.2007.05.013, PII S0898656807001532
  • Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., Forman, D., Global cancer statistics (2011) CA Cancer J Clin, 61 (2), pp. 69-90. , 21296855 10.3322/caac.20107
  • Ramsay, A.K., Leung, H.Y., Signalling pathways in prostate carcinogenesis: Potentials for molecular-targeted therapy (2009) Clin Sci (Lond), 117 (6), pp. 209-228. , 10.1042/CS20080391 1:CAS:528:DC%2BD1MXpvFaqs7Y%3D
  • Berz, D., Wanebo, H., Targeting the growth factors and angiogenesis pathways: Small molecules in solid tumors (2011) J Surg Oncol, 103 (6), pp. 574-586. , 21480252 10.1002/jso.21776 1:CAS:528:DC%2BC3MXktl2hsLw%3D
  • Tertil, M., Jozkowicz, A., Dulak, J., Oxidative stress in tumor angiogenesis-therapeutic targets (2010) Curr Pharm des, 16 (35), pp. 3877-3894. , 21158725 10.2174/138161210794454969 1:CAS:528:DC%2BC3MXisFKqt7c%3D
  • Lin, Q., Weis, S., Yang, G., Weng, Y.-H., Helston, R., Rish, K., Smith, A., Dennery, P.A., Heme oxygenase-1 protein localizes to the nucleus and activates transcription factors important in oxidative stress (2007) Journal of Biological Chemistry, 282 (28), pp. 20621-20633. , http://www.jbc.org/cgi/reprint/282/28/20621, DOI 10.1074/jbc.M607954200
  • Slebos, D.-J., Ryter, S.W., Van Der Toorn, M., Liu, F., Guo, F., Baty, C.J., Karlsson, J.M., Choi, A.M.K., Mitochondrial localization and function of heme oxygenase-1 in cigarette smoke-induced cell death (2007) American Journal of Respiratory Cell and Molecular Biology, 36 (4), pp. 409-417. , DOI 10.1165/rcmb.2006-0214OC
  • Converso, D.P., Taille, C., Carreras, M.C., Jaitovich, A., Poderoso, J.J., Boczkowski, J., HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism (2006) FASEB Journal, 20 (8), pp. E482-E492. , http://www.fasebj.org/cgi/reprint/20/8/1236, DOI 10.1096/fj.05-4204fje
  • Lin, Q.S., Weis, S., Yang, G., Zhuang, T., Abate, A., Dennery, P.A., Catalytic inactive heme oxygenase-1 protein regulates its own expression in oxidative stress (2008) Free Radic Biol Med, 44 (5), pp. 847-855. , 18154739 10.1016/j.freeradbiomed.2007.11.012 1:CAS:528: DC%2BD1cXhslGrtrg%3D
  • Hanahan, D., Weinberg, R.A., Hallmarks of cancer: The next generation (2011) Cell, 144 (5), pp. 646-674. , 21376230 10.1016/j.cell.2011.02.013 1:CAS:528:DC%2BC3MXjsFeqtrk%3D
  • Carmeliet, P., Jain, R.K., Angiogenesis in cancer and other diseases (2000) Nature, 407 (6801), pp. 249-257. , 11001068 10.1038/35025220 1:CAS:528:DC%2BD3cXmvVSls74%3D
  • Zayed, M.A., Yuan, W., Chalothorn, D., Faber, J.E., Parise, L.V., Tumor growth and angiogenesis is impaired in CIB1 knockout mice (2010) J Angiogenes Res, 2, p. 17. , 20804551 10.1186/2040-2384-2-17
  • Sunamura, M., Duda, D.G., Ghattas, M.H., Lozonschi, L., Motoi, F., Yamauchi, J.-I., Matsuno, S., Abraham, N.G., Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer (2003) Angiogenesis, 6 (1), pp. 15-24. , DOI 10.1023/A:1025803600840
  • Miyake, M., Fujimoto, K., Anai, S., Ohnishi, S., Kuwada, M., Nakai, Y., Inoue, T., Hirao, Y., Heme oxygenase-1 promotes angiogenesis in urothelial carcinoma of the urinary bladder (2011) Oncol Rep, 25 (3), pp. 653-660. , 21206978 10.3892/or.2010.1125 1:CAS:528:DC%2BC3MXjvVWgtrs%3D
  • Zhu, X., Fan, W.G., Li, D.P., Lin, M.C., Kung, H., Heme oxygenase-1 system and gastrointestinal tumors (2010) World J Gastroenterol, 16 (21), pp. 2633-2637. , 20518085 10.3748/wjg.v16.i21.2633 1:CAS:528:DC%2BC3cXnt1Cruro%3D
  • Bussolati, B., Mason, J.C., Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis (2006) Antioxidants and Redox Signaling, 8 (7-8), pp. 1153-1163. , DOI 10.1089/ars.2006.8.1153
  • McCawley, L.J., Matrisian, L.M., Tumor progression: Defining the soil round the tumor seed (2001) Current Biology, 11 (1), pp. R25-R27. , DOI 10.1016/S0960-9822(00)00038-5
  • Chen, J., De, S., Brainard, J., Byzova, T.V., Metastatic properties of prostate cancer cells are controlled by VEGF (2004) Cell Communication and Adhesion, 11 (1), pp. 1-11. , DOI 10.1080/15419060490471739
  • Latil, A., Bieche, I., Pesche, S., Valeri, A., Fournier, G., Cussenot, O., Lidereau, R., VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms (2000) International Journal of Cancer, 86 (3), pp. 167-171
  • Bonecchi, R., Locati, M., Mantovani, A., Chemokines and cancer: A fatal attraction (2011) Cancer Cell, 19 (4), pp. 434-435. , 21481784 10.1016/j.ccr.2011.03.017 1:CAS:528:DC%2BC3MXks1WqsLs%3D
  • Huang, S., Robinson, J.B., Deguzman, A., Bucana, C.D., Fidler, I.J., Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8 (2000) Cancer Res, 60 (19), pp. 5334-5339. , 11034066 1:CAS:528:DC%2BD3cXns1ehsL8%3D
  • Rettig, M.B., Heber, D., An, J., Seeram, N.P., Rao, J.Y., Liu, H., Klatte, T., Pantuck, A., Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-κB-dependent mechanism (2008) Mol Cancer Ther, 7 (9), pp. 2662-2671. , 18790748 10.1158/1535-7163.MCT-08-0136 1:CAS:528:DC%2BD1cXhtFSms7nO
  • Shukla, S., MacLennan, G.T., Fu, P., Patel, J., Marengo, S.R., Resnick, M.I., Gupta, S., Nuclear factor-κB/p65 (Rel A) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression (2004) Neoplasia, 6 (4), pp. 390-400. , DOI 10.1593/neo.04112
  • Gasparian, A.V., Yao, Y.J., Kowalczyk, D., Lyakh, L.A., Karseladze, A., Slaga, T.J., Budunova, I.V., The role of IKK in constitutive activation of NF-κB transcription factor in prostate carcinoma cells (2002) Journal of Cell Science, 115 (1), pp. 141-151
  • Huang, S., Pettaway, C.A., Uehara, H., Bucana, C.D., Fidler, I.J., Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis (2001) Oncogene, 20 (31), pp. 4188-4197. , DOI 10.1038/sj.onc.1204535
  • Werbajh, S., Nojek, I., Lanz, R., Costas, M.A., RAC-3 is a NF-κB coactivator (2000) FEBS Lett, 485 (23), pp. 195-199. , 11094166 10.1016/S0014-5793(00)02223-7 1:CAS:528:DC%2BD3cXotlGjs7c%3D

Citas:

---------- APA ----------
Ferrando, M., Gueron, G., Elguero, B., Giudice, J., Salles, A., Leskow, F.C., Jares-Erijman, E.A.,..., Vazquez, E. (2011) . Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis, 14(4), 467-479.
http://dx.doi.org/10.1007/s10456-011-9230-4
---------- CHICAGO ----------
Ferrando, M., Gueron, G., Elguero, B., Giudice, J., Salles, A., Leskow, F.C., et al. "Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer" . Angiogenesis 14, no. 4 (2011) : 467-479.
http://dx.doi.org/10.1007/s10456-011-9230-4
---------- MLA ----------
Ferrando, M., Gueron, G., Elguero, B., Giudice, J., Salles, A., Leskow, F.C., et al. "Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer" . Angiogenesis, vol. 14, no. 4, 2011, pp. 467-479.
http://dx.doi.org/10.1007/s10456-011-9230-4
---------- VANCOUVER ----------
Ferrando, M., Gueron, G., Elguero, B., Giudice, J., Salles, A., Leskow, F.C., et al. Heme oxygenase 1 (HO-1) challenges the angiogenic switch in prostate cancer. Angiogenesis. 2011;14(4):467-479.
http://dx.doi.org/10.1007/s10456-011-9230-4