Artículo

Horjales, S.; Schmidt-Arras, D.; Limardo, R.R.; Leclercq, O.; Obal, G.; Prina, E.; Turjanski, A.G.; Späth, G.F.; Buschiazzo, A. "The crystal structure of the MAP kinase LmaMPK10 from leishmania major reveals parasite-specific features and regulatory mechanisms" (2012) Structure. 20(10):1649-1660
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mitogen-activated protein kinases (MAPKs) are involved in environmental signal sensing. They are thus expected to play key roles in the biology of Trypanosomatid parasites, which display complex life cycles and use extracellular cues to modulate cell differentiation. Despite their relevance, structural data of Trypanosomatid MAPKs is lacking. We have now determined the crystal structure of Leishmania major LmaMPK10, a stage-specifically activated MAPK, both alone and in complex with SB203580. LmaMPK10 was observed to be more similar to p38 than to other human MAPKs. However, significant differences could be identified in the catalytic pocket, as well as in potentially regulatory sites in the N-terminal lobe. The modified pocket architecture in LmaMPK10 precludes DFG-in/DFG-out regulatory flipping as observed in mammalian MAPKs. LmaMPK10-nucleotide association was also studied, revealing a potential C-terminal autoinhibitory mechanism. Overall, these data should speed the discovery of molecules interfering with LmaMPK10 functions, with relevance for antileishmanial drug development strategies. © 2012 Elsevier Ltd.

Registro:

Documento: Artículo
Título:The crystal structure of the MAP kinase LmaMPK10 from leishmania major reveals parasite-specific features and regulatory mechanisms
Autor:Horjales, S.; Schmidt-Arras, D.; Limardo, R.R.; Leclercq, O.; Obal, G.; Prina, E.; Turjanski, A.G.; Späth, G.F.; Buschiazzo, A.
Filiación:Unit of Protein Crystallography, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
Unit of Protein Biophysics, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
Unit of Molecular Parasitology and Signaling, CNRS URA 2581, Institut Pasteur, Paris 75015, France
Department of Structural Biology and Chemistry, Institut Pasteur, Paris 75015, France
Departamento de Quimica Biológica/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
Christian-Albrechts-University Kiel, Institute of Biochemistry, Rudolf-Höber-Str.1, 24118 Kiel, Germany
Palabras clave:4 (4 fluorophenyl) 2 (4 methylsulfinylphenyl) 5 (4 pyridyl)imidazole; mitogen activated protein kinase; article; carboxy terminal sequence; catalysis; crystal structure; enzyme activation; enzyme regulation; enzyme structure; Leishmania major; nonhuman; priority journal; regulatory mechanism; Amino Acid Sequence; Amino Acid Substitution; Catalytic Domain; Conserved Sequence; Crystallography, X-Ray; Hydrogen Bonding; Imidazoles; Kinetics; Leishmania major; Mitogen-Activated Protein Kinases; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Protein Binding; Protein Kinase Inhibitors; Protein Structure, Secondary; Protozoan Proteins; Pyridines; Sequence Homology, Amino Acid; Structural Homology, Protein; Thermodynamics; Leishmania major; Mammalia; Trypanosomatidae
Año:2012
Volumen:20
Número:10
Página de inicio:1649
Página de fin:1660
DOI: http://dx.doi.org/10.1016/j.str.2012.07.005
Título revista:Structure
Título revista abreviado:Structure
ISSN:09692126
CODEN:STRUE
CAS:4 (4 fluorophenyl) 2 (4 methylsulfinylphenyl) 5 (4 pyridyl)imidazole, 152121-47-6; mitogen activated protein kinase, 142243-02-5; Imidazoles; Mitogen-Activated Protein Kinases, 2.7.11.24; Protein Kinase Inhibitors; Protozoan Proteins; Pyridines; SB 203580
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09692126_v20_n10_p1649_Horjales

Referencias:

  • Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Grosse-Kunstleve, R.W., PHENIX: A comprehensive Python-based system for macromolecular structure solution (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 213-221
  • Baker, N.A., Sept, D., Joseph, S., Holst, M.J., McCammon, J.A., Electrostatics of nanosystems: Application to microtubules and the ribosome (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10037-10041
  • Bellon, S., Fitzgibbon, M.J., Fox, T., Hsiao, H.M., Wilson, K.P., The structure of phosphorylated p38gamma is monomeric and reveals a conserved activation-loop conformation (1999) Structure, 7, pp. 1057-1065
  • Bengs, F., Scholz, A., Kuhn, D., Wiese, M., LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana (2005) Mol. Microbiol., 55, pp. 1606-1615
  • Bhattacharya, P., Gupta, G., Majumder, S., Adhikari, A., Banerjee, S., Halder, K., Majumdar, S.B., Majumdar, S., Arabinosylated lipoarabinomannan skews Th2 phenotype towards Th1 during Leishmania infection by chromatin modification: Involvement of MAPK signaling (2011) PLoS ONE, 6, p. 24141
  • Bricogne, G., Blanc, E., Brandl, M., Flensburg, C., Keller, P., Paciorek, W., Roversi, P., Vonrhein, C., (2011) BUSTER Version 2.8.0, , Global Phasing Ltd. Cambridge, United Kingdom
  • Brumlik, M.J., Pandeswara, S., Ludwig, S.M., Murthy, K., Curiel, T.J., Parasite mitogen-activated protein kinases as drug discovery targets to treat human protozoan pathogens (2011) J. Signal Transduct., 2011, p. 971968
  • Chen, G., Porter, M.D., Bristol, J.R., Fitzgibbon, M.J., Pazhanisamy, S., Kinetic mechanism of the p38-alpha MAP kinase: Phosphoryl transfer to synthetic peptides (2000) Biochemistry, 39, pp. 2079-2087
  • Chen, V.B., Arendall III, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, D.C., MolProbity: All-atom structure validation for macromolecular crystallography (2010) Acta Crystallogr. D Biol. Crystallogr., 66, pp. 12-21
  • Chuderland, D., Konson, A., Seger, R., Identification and characterization of a general nuclear translocation signal in signaling proteins (2008) Mol. Cell, 31, pp. 850-861
  • The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr. D Biol. Crystallogr., 50, pp. 760-763. , Collaborative Computational Project, Number 4
  • Cuenda, A., Rouse, J., Doza, Y.N., Meier, R., Cohen, P., Gallagher, T.F., Young, P.R., Lee, J.C., SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1 (1995) FEBS Lett., 364, pp. 229-233
  • Delano, W.L., (2002) The PyMOL Molecular Graphics System DeLano Scientific, , http://www.pymol.org, San Carlos, CA, USA
  • Emsley, P., Cowtan, K., Coot: Model-building tools for molecular graphics (2004) Acta Crystallogr. D Biol. Crystallogr., 60, pp. 2126-2132
  • Huse, M., Kuriyan, J., The conformational plasticity of protein kinases (2002) Cell, 109, pp. 275-282
  • Johnson, L.N., Protein kinase inhibitors: Contributions from structure to clinical compounds (2009) Q. Rev. Biophys., 42, pp. 1-40
  • Kannan, N., Neuwald, A.F., Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha (2004) Protein Sci., 13, pp. 2059-2077
  • Kannan, N., Taylor, S.S., Zhai, Y., Venter, J.C., Manning, G., Structural and functional diversity of the microbial kinome (2007) PLoS Biol., 5, p. 17
  • Kornev, A.P., Haste, N.M., Taylor, S.S., Eyck, L.F., Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 17783-17788
  • Kramer, S., Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids (2012) Mol. Biochem. Parasitol., 181, pp. 61-72
  • Kumari, S., Singh, S., Saha, B., Paliwal, P.K., Leishmania major MAP kinase 10 is protective against experimental L. major infection (2011) Vaccine, 29, pp. 8783-8787
  • Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S., The protein kinase complement of the human genome (2002) Science, 298, pp. 1912-1934
  • Morales, M.A., Renaud, O., Faigle, W., Shorte, S.L., Späth, G.F., Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity (2007) Int. J. Parasitol., 37, pp. 1187-1199
  • Morales, M.A., Watanabe, R., Laurent, C., Lenormand, P., Rousselle, J.C., Namane, A., Späth, G.F., Phosphoproteomic analysis of Leishmania donovani pro- and amastigote stages (2008) Proteomics, 8, pp. 350-363
  • Naula, C., Parsons, M., Mottram, J.C., Protein kinases as drug targets in trypanosomes and Leishmania (2005) Biochim. Biophys. Acta, 1754, pp. 151-159
  • Neuber, H., Leishmaniasis (2008) J. Dtsch. Dermatol. Ges., 6, pp. 754-765
  • Ojo, K.K., Arakaki, T.L., Napuli, A.J., Inampudi, K.K., Keyloun, K.R., Zhang, L., Hol, W.G., Van Voorhis, W.C., Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3 (2011) Mol. Biochem. Parasitol., 176, pp. 98-108
  • Pargellis, C., Tong, L., Churchill, L., Cirillo, P.F., Gilmore, T., Graham, A.G., Grob, P.M., Regan, J., Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site (2002) Nat. Struct. Biol., 9, pp. 268-272
  • Parsons, M., Worthey, E.A., Ward, P.N., Mottram, J.C., Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi (2005) BMC Genomics, 6, p. 127
  • Plotnikov, A., Chuderland, D., Karamansha, Y., Livnah, O., Seger, R., Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation (2011) Mol. Cell. Biol., 31, pp. 3515-3530
  • Plotnikov, A., Zehorai, E., Procaccia, S., Seger, R., The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation (2011) Biochim. Biophys. Acta, 1813, pp. 1619-1633
  • Rotureau, B., Morales, M.A., Bastin, P., Späth, G.F., The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: A key sensory role in parasite signalling and development? (2009) Cell. Microbiol., 11, pp. 710-718
  • Scheeff, E.D., Bourne, P.E., Structural evolution of the protein kinase-like superfamily (2005) PLoS Comput. Biol., 1, p. 49
  • Schindler, T., Bornmann, W., Pellicena, P., Miller, W.T., Clarkson, B., Kuriyan, J., Structural mechanism for STI-571 inhibition of abelson tyrosine kinase (2000) Science, 289, pp. 1938-1942
  • Simard, J.R., Getlik, M., Grütter, C., Pawar, V., Wulfert, S., Rabiller, M., Rauh, D., Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors (2009) J. Am. Chem. Soc., 131, pp. 13286-13296
  • Taylor, S.S., Radzio-Andzelm, E., Three protein kinase structures define a common motif (1994) Structure, 2, pp. 345-355
  • Taylor, S.S., Kornev, A.P., Protein kinases: Evolution of dynamic regulatory proteins (2011) Trends Biochem. Sci., 36, pp. 65-77
  • Technikova-Dobrova, Z., Sardanelli, A.M., Papa, S., Spectrophotometric determination of functional characteristics of protein kinases with coupled enzymatic assay (1991) FEBS Lett., 292, pp. 69-72
  • Thévenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P., Tufféry, P., PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides (2012) Nucleic Acids Res., 40, pp. W288-W293. , WEB SERVER ISSUE
  • Trapani, S., Navaza, J., AMoRe: Classical and modern (2008) Acta Crystallogr. D Biol. Crystallogr., 64, pp. 11-16
  • Turjanski, A.G., Hummer, G., Gutkind, J.S., How mitogen-activated protein kinases recognize and phosphorylate their targets: A QM/MM study (2009) J. Am. Chem. Soc., 131, pp. 6141-6148
  • Wiese, M., A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host (1998) EMBO J., 17, pp. 2619-2628
  • Wiese, M., Leishmania MAP kinases - Familiar proteins in an unusual context (2007) Int. J. Parasitol., 37, pp. 1053-1062
  • Xie, X., Gu, Y., Fox, T., Coll, J.T., Fleming, M.A., Markland, W., Caron, P.R., Su, M.S., Crystal structure of JNK3: A kinase implicated in neuronal apoptosis (1998) Structure, 6, pp. 983-991
  • Yang, Z., Zhang, X., Darrah, P.A., Mosser, D.M., The regulation of Th1 responses by the p38 MAPK (2010) J. Immunol., 185, pp. 6205-6213
  • Zhang, Y.Y., Mei, Z.Q., Wu, J.W., Wang, Z.X., Enzymatic activity and substrate specificity of mitogen-activated protein kinase p38alpha in different phosphorylation states (2008) J. Biol. Chem., 283, pp. 26591-26601

Citas:

---------- APA ----------
Horjales, S., Schmidt-Arras, D., Limardo, R.R., Leclercq, O., Obal, G., Prina, E., Turjanski, A.G.,..., Buschiazzo, A. (2012) . The crystal structure of the MAP kinase LmaMPK10 from leishmania major reveals parasite-specific features and regulatory mechanisms. Structure, 20(10), 1649-1660.
http://dx.doi.org/10.1016/j.str.2012.07.005
---------- CHICAGO ----------
Horjales, S., Schmidt-Arras, D., Limardo, R.R., Leclercq, O., Obal, G., Prina, E., et al. "The crystal structure of the MAP kinase LmaMPK10 from leishmania major reveals parasite-specific features and regulatory mechanisms" . Structure 20, no. 10 (2012) : 1649-1660.
http://dx.doi.org/10.1016/j.str.2012.07.005
---------- MLA ----------
Horjales, S., Schmidt-Arras, D., Limardo, R.R., Leclercq, O., Obal, G., Prina, E., et al. "The crystal structure of the MAP kinase LmaMPK10 from leishmania major reveals parasite-specific features and regulatory mechanisms" . Structure, vol. 20, no. 10, 2012, pp. 1649-1660.
http://dx.doi.org/10.1016/j.str.2012.07.005
---------- VANCOUVER ----------
Horjales, S., Schmidt-Arras, D., Limardo, R.R., Leclercq, O., Obal, G., Prina, E., et al. The crystal structure of the MAP kinase LmaMPK10 from leishmania major reveals parasite-specific features and regulatory mechanisms. Structure. 2012;20(10):1649-1660.
http://dx.doi.org/10.1016/j.str.2012.07.005