Cerliani, J.P.; Blidner, A.G.; Toscano, M.A.; Croci, D.O.; Rabinovich, G.A."Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs" (2017) Trends in Biochemical Sciences. 42(4):255-273
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


The vast range and complexity of glycan structures and their dynamic variations in health and disease have presented formidable challenges toward understanding the biological significance of these molecules. Despite these limitations, compelling evidence highlights a major role for galectins, a family of soluble glycan-binding proteins, as endogenous decoders that translate glycan-containing information into a broad spectrum of cellular responses by modulating receptor clustering, reorganization, endocytosis, and signaling. Here, we underscore pioneer findings and recent advances in understanding the biology of galectin–glycan interactions in myeloid, lymphoid, and endothelial compartments, highlighting important pathways by which these multivalent complexes control immune and vascular programs. Implementation of novel glycoanalytical approaches, as well as the use of genetically engineered cell and organism models, have allowed glycans and galectins to be explored across a range of cellular processes. © 2016 Elsevier Ltd


Documento: Artículo
Título:Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs
Autor:Cerliani, J.P.; Blidner, A.G.; Toscano, M.A.; Croci, D.O.; Rabinovich, G.A.
Filiación:Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, C1428, Argentina
Instituto de Histología y Embriología de Mendoza ‘Dr. Mario H. Burgos’ (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, C5500, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
Palabras clave:endothelial cells; galectins; glycans; lymphoid cells; myeloid cells; binding protein; galectin; glycan; glycan binding protein; unclassified drug; galectin; polysaccharide; B lymphocyte; bone marrow; carbohydrate analysis; cardiovascular system; cell function; dendritic cell; endocytosis; endothelium; eosinophil; genetic engineering; human; immune system; lymphoid tissue; macrophage; mast cell; microglia; model; molecular interaction; monocyte; natural killer cell; neutrophil; nonhuman; organism model; protein aggregation; Review; signal transduction; T lymphocyte; chemistry; immunology; metabolism; Endothelium; Galectins; Humans; Immune System; Polysaccharides; Signal Transduction
Página de inicio:255
Página de fin:273
Título revista:Trends in Biochemical Sciences
Título revista abreviado:Trends Biochem. Sci.
CAS:Galectins; Polysaccharides


  • Ohtsubo, K., Marth, J.D., Glycosylation in cellular mechanisms of health and disease (2006) Cell, 126, pp. 855-867
  • Bard, F., Cracking the glycome encoder: signaling, trafficking, and glycosylation (2016) Trends Cell Biol., 26, pp. 379-388
  • Moremen, K.W., Vertebrate protein glycosylation: diversity, synthesis and function (2012) Nat. Rev. Mol. Cell Biol., 13, pp. 448-462
  • Pinho, S.S., Reis, C.A., Glycosylation in cancer: mechanisms and clinical implications (2015) Nat. Rev. Cancer, 15, pp. 540-555
  • Albrecht, S., Glycosylation as a marker for inflammatory arthritis (2014) Cancer Biomark., 14, pp. 17-28
  • Johnson, J.L., The regulatory power of glycans and their binding partners in immunity (2013) Trends Immunol., 34, pp. 290-298
  • Rabinovich, G.A., Croci, D.O., Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer (2012) Immunity, 36, pp. 322-335
  • Rabinovich, G.A., Toscano, M.A., Turning ‘sweet’ on immunity: galectin-glycan interactions in immune tolerance and inflammation (2009) Nat. Rev. Immunol., 9, pp. 338-352
  • Nabi, I.R., The galectin lattice at a glance (2015) J. Cell Sci., 128, pp. 2213-2219
  • Demetriou, M., Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation (2001) Nature, 409, pp. 733-739
  • Bonzi, J., Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions (2015) Nat. Commun., 6, p. 6194
  • Partridge, E.A., Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis (2004) Science, 306, pp. 120-124
  • Starossom, S.C., Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration (2012) Immunity, 37, pp. 249-263
  • Kouo, T., Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells (2015) Cancer Immunol. Res., 3, pp. 412-423
  • Lau, K.S., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation (2007) Cell, 129, pp. 123-134
  • Zhu, C., The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity (2005) Nat. Immunol., 6, pp. 1245-1252
  • Rangachari, M., Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion (2012) Nat. Med., 18, pp. 1394-1400
  • Croci, D.O., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Markowska, A.I., Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells (2011) J. Biol. Chem., 286, pp. 29913-29921
  • Chen, W.S., Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR–3 (2016) Nat. Commun., 7, p. 11302
  • Motz, G.T., Coukos, G., The parallel lives of angiogenesis and immunosuppression: cancer and other tales (2011) Nat. Rev. Immunol., 11, pp. 702-711
  • Rabinovich, G.A., Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: biochemical and functional characterization (1998) J. Immunol., 160, pp. 4831-4840
  • Sato, S., Hughes, R.C., Control of Mac-2 surface expression on murine macrophage cell lines (1994) Eur. J. Immunol., 24, pp. 216-221
  • Barrionuevo, P., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J. Immunol., 178, pp. 436-445
  • Correa, S.G., Opposite effects of galectin-1 on alternative metabolic pathways of L-arginine in resident, inflammatory, and activated macrophages (2003) Glycobiology, 13, pp. 119-128
  • Zuniga, E., Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: modulation of microbicidal activity and survival (2001) Infect. Immun., 69, pp. 6804-6812
  • Rostoker, R., Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype (2013) Prostaglandin other Lipid Mediat., 107, pp. 85-94
  • Malik, R.K., Galectin-1 stimulates monocyte chemotaxis via the p44/42 MAP kinase pathway and a pertussis toxin-sensitive pathway (2009) Glycobiology, 19, pp. 1402-1407
  • Sano, H., Human galectin-3 is a novel chemoattractant for monocytes and macrophages (2000) J. Immunol., 165, pp. 2156-2164
  • Sano, H., Critical role of galectin-3 in phagocytosis by macrophages (2003) J. Clin. Invest., 112, pp. 389-397
  • Yamaoka, A., A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils (1995) J. Immunol., 154, pp. 3479-3487
  • Hsu, D.K., Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses (2000) Am. J. Pathol., 156, pp. 1073-1083
  • Jeon, S.B., Galectin-3 exerts cytokine-like regulatory actions through the JAK-STAT pathway (2010) J. Immunol., 185, pp. 7037-7046
  • Lalancette-Hebert, M., Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury (2012) J. Neurosci., 32, pp. 10383-10395
  • Burguillos, M.A., Microglia-secreted galectin-3 acts as a Toll-like Receptor 4 ligand and contributes to microglial activation (2015) Cell Rep., 10, pp. 1626-1638
  • Hoyos, H.C., Galectin-3 controls the response of microglial cells to limit cuprizone-induced demyelination (2014) Neurobiol. Dis., 62, pp. 441-455
  • MacKinnon, A.C., Regulation of alternative macrophage activation by galectin-3 (2008) J. Immunol., 180, pp. 2650-2658
  • Jia, W., Galectin-3 accelerates M2 macrophage infiltration and angiogenesis in tumors (2013) Am. J. Pathol., 182, pp. 1821-1831
  • Yildirim, C., Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages (2015) PLoS ONE, 10, p. e0124347
  • Jayaraman, P., Tim-3 binding to galectin-9 stimulates antimicrobial immunity (2010) J. Exp. Med., 207, pp. 2343-2354
  • Sada-Ovalle, I., The Tim-3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis (2012) J. Immunol., 12, pp. 5896-5902
  • Anderson, A.C., Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells (2007) Science, 318, pp. 1141-1143
  • Ma, C.J., Cis association of galectin-9 with Tim-3 differentially regulates IL-12/IL-23 expressions in monocytes via TLR signaling (2013) PLoS ONE, 8, p. e72488
  • Vaitaitis, G.M., Wagner, D.H., Jr, Galectin-9 controls CD40 signaling through a Tim-3 independent mechanism and redirects the cytokine profile of pathogenic T cells in autoimmunity (2012) PLoS ONE, 7, p. e38708
  • Leitner, J., TIM-3 does not act as a receptor for galectin-9 (2013) PLoS Pathog., 9, p. e1003253
  • Wan, L., Galectin-12 enhances inflammation by promoting M1 polarization of macrophages and reduces insulin sensitivity in adipocytes (2016) Glycobiology, 7, pp. 732-744
  • Bax, M., Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins (2007) J. Immunol., 179, pp. 8216-8224
  • Ilarregui, J.M., Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10 (2009) Nat. Immunol., 10, pp. 981-991
  • Mari, E.R., Galectin-1 is essential for the induction of MOG35-55 -based intravenous tolerance in experimental autoimmune encephalomyelitis (2016) Eur. J. Immunol., 46, pp. 1783-1796
  • Blois, S.M., A pivotal role for galectin-1 in fetomaternal tolerance (2007) Nat. Med., 13, pp. 1450-1457
  • Poncini, C.V., Trypanosoma cruzi Infection Imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms (2015) J. Immunol., 195, pp. 3311-3324
  • Mobergslien, A., Sioud, M., Galectin-1 and -3 gene silencing in immature and mature dendritic cells enhances T cell activation and interferon-gamma production (2012) J. Leukoc. Biol., 91, pp. 461-467
  • Fulcher, J.A., Galectin-1 co-clusters CD43/CD45 on dendritic cells and induces cell activation and migration through Syk and protein kinase C signaling (2009) J. Biol. Chem., 284, pp. 26860-26870
  • Thiemann, S., Galectin-1 regulates tissue exit of specific dendritic cell populations (2015) J. Biol. Chem., 290, pp. 22662-22677
  • Tesone, A.J., Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells (2016) Cell Rep., 14, pp. 1774-1786
  • Kuo, P.L., Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor (2012) J. Biol. Chem., 287, pp. 9753-9764
  • Fermin Lee, A., Galectin-3 modulates Th17 responses by regulating dendritic cell cytokines (2013) Am. J. Pathol., 183, pp. 1209-1222
  • Fermino, M.L., Lack of galectin-3 increases Jagged1/Notch activation in bone marrow-derived dendritic cells and promotes dysregulation of T helper cell polarization (2016) Mol. Immunol., 76, pp. 22-34
  • Breuilh, L., Galectin-3 modulates immune and inflammatory responses during helminthic infection: impact of galectin-3 deficiency on the functions of dendritic cells (2007) Infect. Immun., 75, pp. 5148-5157
  • Volarevic, V., Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury (2015) Eur. J. Immunol., 45, pp. 531-543
  • Hsu, D.K., Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells (2009) J. Invest. Dermatol., 129, pp. 573-583
  • Shan, M., Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals (2013) Science, 342, pp. 447-453
  • Dai, S.Y., Galectin-9 induces maturation of human monocyte-derived dendritic cells (2005) J. Immunol., 175, pp. 2974-2981
  • Hsu, Y.L., Up-regulation of galectin-9 induces cell migration in human dendritic cells infected with dengue virus (2015) J. Cell. Mol. Med., 19, pp. 1065-1076
  • Nagahara, K., Galectin-9 increases Tim-3+ dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions (2008) J. Immunol., 181, pp. 7660-7669
  • Rabinovich, G.A., Evidence of a role for galectin-1 in acute inflammation (2000) Eur. J. Immunol., 30, pp. 1331-1339
  • Woidacki, K., Mast cells rescue implantation defects caused by c-kit deficiency (2013) Cell Death Dis., 4, p. e462
  • Chen, H.Y., Role of galectin-3 in mast cell functions: galectin-3-deficient mast cells exhibit impaired mediator release and defective JNK expression (2006) J. Immunol., 177, pp. 4991-4997
  • Bambouskova, M., New regulatory roles of galectin-3 in high-affinity IgE receptor signaling (2016) Mol. Cell. Biol., 36, pp. 1366-1382
  • Kojima, R., Galectin-9 enhances cytokine secretion, but suppresses survival and degranulation, in human mast cell line (2014) PLoS ONE, 9, p. e86106
  • Ge, X.N., Regulation of eosinophilia and allergic airway inflammation by the glycan-binding protein galectin-1 (2016) Proc. Natl. Acad. Sci. U.S.A., 113, pp. 4837-4846
  • Mello, C.B., Immunomodulatory effects of galectin-1 on an IgE-mediated allergic conjunctivitis model (2015) Invest. Ophthalmol. Vis. Sci., 56, pp. 693-704
  • Rao, S.P., Galectin-3 functions as an adhesion molecule to support eosinophil rolling and adhesion under conditions of flow (2007) J. Immunol., 179, pp. 7800-7807
  • Matsushita, N., Requirement of divalent galactoside-binding activity of ecalectin/galectin-9 for eosinophil chemoattraction (2000) J. Biol. Chem., 275, pp. 8355-8360
  • Chua, J.C., Galectin-10, a potential biomarker of eosinophilic airway inflammation (2012) PLoS ONE, 7, p. e42549
  • Young, A.R., Functional characterization of an eosinophil-specific galectin, ovine galectin-14 (2009) Glycoconj. J., 26, pp. 423-432
  • Cooper, D., Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow (2008) J. Leukoc. Biol., 83, pp. 1459-1466
  • Auvynet, C., Galectin-1 promotes human neutrophil migration (2013) Glycobiology, 23, pp. 32-42
  • Stowell, S.R., Galectin-1 induces reversible phosphatidylserine exposure at the plasma membrane (2009) Mol. Biol. Cell, 20, pp. 1408-1418
  • Stowell, S.R., Human galectin-1,-2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells (2007) Blood, 109, pp. 219-227
  • Nieminen, J., Galectin-3 interacts with naive and primed neutrophils, inducing innate immune responses (2005) J. Leukoc. Biol., 78, pp. 1127-1135
  • Nieminen, J., Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer (2007) J. Biol. Chem., 282, pp. 1374-1383
  • Bhaumik, P., Galectin-3 facilitates neutrophil recruitment as an innate immune response to a parasitic protozoa cutaneous infection (2013) J. Immunol., 190, pp. 630-640
  • Mishra, B.B., Galectin-3 functions as an alarmin: pathogenic role for sepsis development in murine respiratory tularemia (2013) PLoS ONE, 8, p. e59616
  • Fernandez, G.C., Galectin-3 and soluble fibrinogen act in concert to modulate neutrophil activation and survival: involvement of alternative MAPK pathways (2005) Glycobiology, 15, pp. 519-527
  • Nishi, N., Galectin-8 modulates neutrophil function via interaction with integrin alphaM (2003) Glycobiology, 13, pp. 755-763
  • Vega-Carrascal, I., Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated Gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung (2014) J. Immunol., 192, pp. 2418-2431
  • Stowell, S.R., Innate immune lectins kill bacteria expressing blood group antigen (2010) Nat. Med., 16, pp. 295-301
  • Croci, D.O., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma (2012) J. Exp. Med., 209, pp. 1985-2000
  • Baker, G.J., Natural killer cells require monocytic Gr–1(+)/CD11b(+) myeloid cells to eradicate orthotopically engrafted glioma cells (2016) Oncoimmunology, 5, p. e1163461
  • Wang, W., Tumor-released Galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack (2014) J. Biol. Chem., 289, pp. 33311-33319
  • Tsuboi, S., A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans (2011) EMBO J., 30, pp. 3173-3185
  • Gleason, M.K., Tim-3 is an inducible human natural killer cell receptor that enhances interferon gamma production in response to galectin-9 (2012) Blood, 119, pp. 3064-3072
  • Golden-Mason, L., Galectin-9 functionally impairs natural killer cells in humans and mice (2013) J. Virol., 87, pp. 4835-4845
  • Gauthier, L., Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering (2002) Proc. Natl. Acad. Sci. U.S.A., 99, pp. 13014-13019
  • Espeli, M., Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions (2009) Blood, 113, pp. 5878-5886
  • Elantak, L., Structural basis for galectin-1-dependent pre-B cell receptor (pre-BCR) activation (2012) J. Biol. Chem., 287, pp. 44703-44713
  • Croci, D.O., Nurse-like cells control the activity of chronic lymphocytic leukemia B cells via galectin-1 (2013) Leukemia, 27, pp. 1413-1416
  • Tsai, C.M., Phosphoproteomic analyses reveal that galectin-1 augments the dynamics of B-cell receptor signaling (2014) J. Proteomics, 103, pp. 241-253
  • Clark, M.C., Galectin-3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death (2012) Blood, 120, pp. 4635-4644
  • Zuñiga, E., Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis (2001) J. Leukoc. Biol., 70, pp. 73-79
  • Acosta-Rodriguez, E.V., Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection (2004) J. Immunol., 172, pp. 493-502
  • Tabrizi, S.J., T cell leukemia/lymphoma 1 and galectin-1 regulate survival/cell death pathways in human naive and IgM+ memory B cells through altering balances in Bcl-2 family proteins (2009) J. Immunol., 182, pp. 1490-1499
  • Anginot, A., Galectin 1 modulates plasma cell homeostasis and regulates the humoral immune response (2013) J. Immunol., 190, pp. 5526-5533
  • Moritoki, M., Galectin-9 ameliorates clinical severity of MRL/lpr lupus-prone mice by inducing plasma cell apoptosis independently of Tim-3 (2013) PLoS ONE, 8, p. e60807
  • Chen, I.J., Lateral compartmentalization of T cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling (2007) J. Biol. Chem., 48, pp. 35361-35372
  • Demotte, N., Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes (2008) Immunity, 28, pp. 414-424
  • Antonopoulos, A., Loss of effector function of human cytolytic T lymphocytes is accompanied by major alterations in N- and O-glycosylation (2012) J. Biol. Chem., 287, pp. 11240-11251
  • Petit, A.E., A major secretory defect of tumour-infiltrating T lymphocytes due to galectin impairing LFA-1-mediated synapse completion (2016) Nat. Commun., 7, p. 12242
  • Mycko, M.P., Brain glycolipids suppress T helper cells and inhibit autoimmune demyelination (2014) J. Neurosci., 34, pp. 8646-8658
  • Bi, S., Galectin-9 binding to cell surface protein disulfide isomerase regulates the redox environment to enhance T-cell migration and HIV entry (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 10650-10655
  • Chen, H.Y., Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 14496-14501
  • Madireddi, S., Galectin-9 controls the therapeutic activity of 4-1BB-targeting antibodies (2014) J. Exp. Med., 211, pp. 1433-1448
  • de la Fuente, H., The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1 (2014) Mol. Cell. Biol., 34, pp. 2479-2487
  • Lichtenstein, R.G., Rabinovich, G.A., Glycobiology of cell death: when glycans and lectins govern cell fate (2013) Cell Death Differ., 20, pp. 976-986
  • Stillman, B.N., Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death (2006) J. Immunol., 176, pp. 778-789
  • Matarrese, P., Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding, and fission (2005) J. Biol. Chem., 280, pp. 6969-6985
  • Di Lella, S., When galectins recognize glycans: from biochemistry to physiology and back again (2011) Biochemistry, 50, pp. 7842-7857
  • Toscano, M.A., Differential glycosylation of Th1, Th2 and Th-17 effector cells selectively regulates susceptibility to cell death (2007) Nat. Immunol., 8, pp. 825-834
  • Rabinovich, G.A., Recombinant galectin-1 and its genetic delivery suppress collagen-induced arthritis via T cell apoptosis (1999) J. Exp. Med., 190, pp. 385-398
  • Toscano, M.A., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses (2006) J. Immunol., 176, pp. 6323-6332
  • Banh, A., Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis (2011) Cancer Res., 71, pp. 4423-4431
  • Juszczynski, P., The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma (2007) Proc. Natl. Acad. Sci. U.S.A., 104, pp. 13134-13139
  • Dalotto-Moreno, T., Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease (2013) Cancer Res., 73, pp. 1107-1117
  • Rubinstein, N., Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege (2004) Cancer Cell, 5, pp. 241-251
  • Cedeno-Laurent, F., Galectin-1 inhibits the viability, proliferation, and Th1 cytokine production of nonmalignant T cells in patients with leukemic cutaneous T-cell lymphoma (2012) Blood, 119, pp. 3534-3538
  • Cedeno-Laurent, F., Metabolic inhibition of galectin-1-binding carbohydrates accentuates antitumor immunity (2012) J. Invest. Dermatol., 132, pp. 410-420
  • Fukumori, T., CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis (2003) Cancer Res., 63, pp. 8302-8311
  • Yang, R.Y., Expression of galectin-3 modulates T-cell growth and apoptosis (1996) Proc. Natl. Acad. Sci. U.S.A., 13, pp. 6737-6742
  • Deak, M., Novel role for galectin-1 in T-cells under physiological and pathological conditions (2015) Immunobiology, 220, pp. 483-489
  • Norambuena, A., Galectin-8 induces apoptosis in Jurkat T cells by phosphatidic acid-mediated ERK1/2 activation supported by protein kinase A down-regulation (2009) J. Biol. Chem., 284, pp. 12670-12679
  • Tribulatti, M.V., Galectin-8 induces apoptosis in the CD4(high)CD8(high) thymocyte subpopulation (2007) Glycobiology, 17, pp. 1404-1412
  • Paclik, D., Galectin-4 controls intestinal inflammation by selective regulation of peripheral and mucosal T cell apoptosis and cell cycle (2008) PLoS ONE, 3, p. e2629
  • Su, E.W., Galectin-9 regulates T helper cell function independently of Tim-3 (2011) Glycobiology, 21, pp. 1258-1265
  • Oomizu, S., Galectin-9 suppresses Th17 cell development in an IL-2-dependent but Tim-3-independent manner (2012) Clin. Immunol., 143, pp. 51-58
  • Li, Y., The N- and C-terminal carbohydrate recognition domains of galectin-9 contribute differently to its multiple functions in innate immunity and adaptive immunity (2011) Mol. Immunol., 48, pp. 670-677
  • Jiang, H.R., Galectin-3 deficiency reduces the severity of experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 1167-1173
  • Fermino, M.L., Galectin-3 negatively regulates the frequency and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells and influences the course of Leishmania major infection (2013) Eur. J. Immunol., 43, pp. 1806-1817
  • Sampson, J.F., Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFbeta signaling (2016) Immunol. Cell Biol., 94, p. 220
  • Wu, C., Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells (2014) Immunity, 41, pp. 270-282
  • Cedeno-Laurent, F., Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression (2012) J. Immunol., 188, pp. 3127-3137
  • Garin, M.I., Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells (2007) Blood, 109, pp. 2058-2065
  • Kubach, J., Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function (2007) Blood, 110, pp. 1550-1558
  • Wang, J., Cross-linking of GM1 ganglioside by galectin-1 mediates regulatory T cell activity involving TRPC5 channel activation: possible role in suppressing experimental autoimmune encephalomyelitis (2009) J. Immunol., 182, pp. 4036-4045
  • Rutkowski, M.R., Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation (2015) Cancer Cell, 27, pp. 27-40
  • Bergers, G., Hanahan, D., Modes of resistance to anti-angiogenic therapy (2008) Nat. Rev. Cancer, 8, pp. 592-603
  • Thijssen, V.L., Tumor cells secrete galectin-1 to enhance endothelial cell activity (2010) Cancer Res., 70, pp. 6216-6224
  • Laderach, D.J., A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease (2013) Cancer Res., 73, pp. 86-96
  • Markowska, A.I., Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response (2010) J. Exp. Med., 207, pp. 1981-1993
  • Delgado, V.M., Modulation of endothelial cell migration and angiogenesis: a novel function for the ‘tandem-repeat’ lectin galectin-8 (2011) FASEB J., 25, pp. 242-254
  • Mathieu, V., Galectin-1 in melanoma biology and related neo-angiogenesis processes (2012) J. Invest. Dermatol., 132, pp. 2245-2254
  • Baston, J.I., Targeting galectin-1-induced angiogenesis mitigates the severity of endometriosis (2014) J. Pathol., 234, pp. 329-337
  • Hsieh, S.H., Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells (2008) Oncogene, 27, pp. 3746-3753
  • D'Haene, N., VEGFR1 and VEGFR2 involvement in extracellular galectin-1- and galectin-3-induced angiogenesis (2013) PLoS ONE, 8, p. e67029
  • Nangia-Makker, P., Galectin-3 induces endothelial cell morphogenesis and angiogenesis (2000) Am. J. Pathol., 156, pp. 899-909
  • Heusschen, R., Endothelial LGALS9 splice variant expression in endothelial cell biology and angiogenesis (2014) Biochim. Biophys. Acta, 1842, pp. 284-292
  • Vasta, G.R., Roles of galectins in infection (2009) Nat. Rev. Microbiol., 7, pp. 424-438
  • Mariño, K., A systematic approach to protein glycosylation analysis: a path through the maze (2010) Nat. Chem. Biol., 6, pp. 713-723
  • Gabius, H.J., From lectin structure to functional glycomics: principles of the sugar code (2011) Trends Biochem. Sci., 36, pp. 298-313
  • Yang, Z., Engineered CHO cells for production of diverse, homogeneous glycoproteins (2015) Nat. Biotechnol., 33, pp. 842-844
  • Stanley, P., What have we learned from glycosyltransferase knockouts in mice? (2016) J. Mol. Biol., 428, pp. 3166-3182
  • Thiemann, S., Baum, L.G., Galectins and immune responses-just how do they do those things they do? (2016) Annu. Rev. Immunol., 34, pp. 243-264
  • Rabinovich, G., Regulated expression of a 16-kd galectin-like protein in activated rat macrophages (1996) J. Leukoc. Biol., 59, pp. 363-370
  • Sato, S., Hughes, R.C., Regulation of secretion and surface expression of Mac-2, a galactoside-binding protein of macrophages (1994) J. Biol. Chem., 269, pp. 4424-4430
  • Thijssen, V.L., Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy (2006) Proc. Natl. Acad. Sci. U.S.A., 103, pp. 15975-15980
  • Etulain, J., Control of angiogenesis by galectins involves the release of platelet-derived proangiogenic factors (2014) PLoS ONE, 9, p. e96402
  • Thijssen, V.L., The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells (2008) Am. J. Pathol., 172, pp. 545-553


---------- APA ----------
Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O. & Rabinovich, G.A. (2017) . Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs. Trends in Biochemical Sciences, 42(4), 255-273.
---------- CHICAGO ----------
Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O., Rabinovich, G.A. "Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs" . Trends in Biochemical Sciences 42, no. 4 (2017) : 255-273.
---------- MLA ----------
Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O., Rabinovich, G.A. "Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs" . Trends in Biochemical Sciences, vol. 42, no. 4, 2017, pp. 255-273.
---------- VANCOUVER ----------
Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O., Rabinovich, G.A. Translating the ‘Sugar Code’ into Immune and Vascular Signaling Programs. Trends Biochem. Sci. 2017;42(4):255-273.