Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Alternative splicing is controlled by cis-regulatory sequences present in the pre-mRNA and their cognate trans-acting factors, as well as by its coupling to RNA polymerase II (pol II) transcription. A unique feature of this polymerase is the presence of a highly repetitive carboxy terminal domain (CTD), which is subject to multiple regulatory post-translational modifications. CTD phosphorylation events affect the transcriptional properties of pol II and the outcome of co-transcriptional alternative splicing by mediating the effects of splicing factors and by modulating transcription elongation rates. Here, we discuss various examples of involvement of the CTD in alternative splicing regulation as well as the current methodological limitations in deciphering the detailed mechanisms of this process. © 2010 Elsevier Ltd.

Registro:

Documento: Artículo
Título:The carboxy terminal domain of RNA polymerase II and alternative splicing
Autor:Muñoz, M.J.; de la Mata, M.; Kornblihtt, A.R.
Filiación:Laboratorio de Fisiología y Biología Molecular, IFIBYNE-CONICET, Departamento de Fisiología, Biología Molecular y Celular, Fac. de Ciencias Exactas y Naturales, Univ. de Buenos Aires. Ciudad Universitaria, Pabellón 2, (C1428EHA) Buenos Aires, Argentina
Palabras clave:cyclin dependent kinase 7; RNA polymerase II; small nuclear ribonucleoprotein; alternative RNA splicing; carboxy terminal sequence; chromatin assembly and disassembly; consensus sequence; molecular dynamics; nonhuman; priority journal; protein phosphorylation; protein processing; protein protein interaction; review; RNA capping; RNA processing; RNA translation; spliceosome; transcription regulation; Alternative Splicing; Animals; Humans; Phosphorylation; Protein Processing, Post-Translational; RNA Polymerase II
Año:2010
Volumen:35
Número:9
Página de inicio:497
Página de fin:504
DOI: http://dx.doi.org/10.1016/j.tibs.2010.03.010
Título revista:Trends in Biochemical Sciences
Título revista abreviado:Trends Biochem. Sci.
ISSN:09680004
CODEN:TBSCD
CAS:RNA Polymerase II, 2.7.7.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09680004_v35_n9_p497_Munoz

Referencias:

  • Corden, J.L., A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II (1985) Proc. Natl. Acad. Sci. U. S. A., 82, pp. 7934-7938
  • Gerber, H.P., RNA polymerase II C-terminal domain required for enhancer-driven transcription (1995) Nature, 374, pp. 660-662
  • McCracken, S., The C-terminal domain of RNA polymerase II couples mRNA processing to transcription (1997) Nature, 385, pp. 357-361
  • McCracken, S., 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II (1997) Genes Dev., 11, pp. 3306-3318
  • Cramer, P., Functional association between promoter structure and transcript alternative splicing (1997) Proc. Natl. Acad. Sci. U. S. A., 94, pp. 11456-11460
  • Kim, E., Different levels of alternative splicing among eukaryotes (2007) Nucleic Acids Res., 35, pp. 125-131
  • Pan, Q., Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing (2008) Nat. Genet., 40, pp. 1413-1415
  • Wang, E.T., Alternative isoform regulation in human tissue transcriptomes (2008) Nature, 456, pp. 470-476
  • Orengo, J.P., Cooper, T.A., Alternative splicing in disease (2007) Adv. Exp. Med. Biol., 623, pp. 212-223
  • Caceres, J.F., Kornblihtt, A.R., Alternative splicing: multiple control mechanisms and involvement in human disease (2002) Trends Genet., 18, pp. 186-193
  • Cartegni, L., Listening to silence and understanding nonsense: exonic mutations that affect splicing (2002) Nat. Rev. Genet., 3, pp. 285-298
  • Faustino, N.A., Cooper, T.A., Pre-mRNA splicing and human disease (2003) Genes Dev., 17, pp. 419-437
  • Pagani, F., Baralle, F.E., Genomic variants in exons and introns: identifying the splicing spoilers (2004) Nat. Rev. Genet., 5, pp. 389-396
  • David, C.J., HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer (2010) Nature, 463, pp. 364-368. , zzz
  • Ghigna, C., Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene (2005) Mol. Cell, 20, pp. 881-890
  • Karni, R., The gene encoding the splicing factor SF2/ASF is a proto-oncogene (2007) Nat. Struct. Mol. Biol., 14, pp. 185-193
  • Srebrow, A., Kornblihtt, A.R., The connection between splicing and cancer (2006) J. Cell Sci., 119, pp. 2635-2641
  • Ding, J.H., Dilated cardiomyopathy caused by tissue-specific ablation of SC35 in the heart (2004) EMBO J., 23, pp. 885-896
  • Xu, X., ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle (2005) Cell, 120, pp. 59-72
  • Feng, Y., SRp38 regulates alternative splicing and is required for Ca(2+) handling in the embryonic heart (2009) Dev. Cell, 16, pp. 528-538
  • Graveley, B.R., Alternative splicing: regulation without regulators (2009) Nat. Struct. Mol. Biol., 16, pp. 13-15
  • Xu, Y.X., Manley, J.L., Pinning down transcription: regulation of RNA polymerase II activity during the cell cycle (2004) Cell Cycle, 3, pp. 432-435
  • Xu, Y.X., Manley, J.L., Pin1 modulates RNA polymerase II activity during the transcription cycle (2007) Genes Dev., 21, pp. 2950-2962
  • Kelly, W.G., RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc (1993) J. Biol. Chem., 268, pp. 10416-10424
  • de Almeida, S.F., Carmo-Fonseca, M., The CTD role in cotranscriptional RNA processing and surveillance (2008) FEBS Lett., 582, pp. 1971-1976
  • Egloff, S., Murphy, S., Cracking the RNA polymerase II CTD code (2008) Trends Genet., 24, pp. 280-288
  • Perales, R., Bentley, D., " Cotranscriptionality": the transcription elongation complex as a nexus for nuclear transactions (2009) Mol. Cell, 36, pp. 178-191
  • de la Mata, M., Kornblihtt, A.R., RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20 (2006) Nat. Struct. Mol. Biol., 13, pp. 973-980
  • Meininghaus, M., Conditional expression of RNA polymerase II in mammalian cells. Deletion of the carboxyl-terminal domain of the large subunit affects early steps in transcription (2000) J. Biol. Chem., 275, pp. 24375-24382
  • Phatnani, H.P., Greenleaf, A.L., Phosphorylation and functions of the RNA polymerase II CTD (2006) Genes Dev., 20, pp. 2922-2936
  • Yoh, S.M., The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation (2008) Genes Dev., 22, pp. 3422-3434
  • Cho, H., A human RNA polymerase II complex containing factors that modify chromatin structure (1998) Mol. Cell Biol., 18, pp. 5355-5363
  • Bentley, D.L., Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors (2005) Curr. Opin. Cell Biol., 17, pp. 251-256
  • Shuman, S., Structure, mechanism, and evolution of the mRNA capping apparatus (2001) Prog. Nucleic Acid Res. Mol. Biol., 66, pp. 1-40
  • Buratowski, S., Progression through the RNA polymerase II CTD cycle (2009) Mol. Cell, 36, pp. 541-546
  • Ahn, S.H., Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing (2004) Mol. Cell, 13, pp. 67-76
  • Meinhart, A., Cramer, P., Recognition of RNA polymerase II carboxy-terminal domain by 3'-RNA-processing factors (2004) Nature, 430, pp. 223-226
  • Misteli, T., Spector, D.L., RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo (1999) Mol. Cell, 3, pp. 697-705
  • Zeng, C., Berget, S.M., Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing (2000) Mol. Cell Biol., 20, pp. 8290-8301
  • Hirose, Y., Phosphorylated RNA polymerase II stimulates pre-mRNA splicing (1999) Genes Dev., 13, pp. 1234-1239
  • Beyer, A.L., Osheim, Y.N., Splice site selection, rate of splicing, and alternative splicing on nascent transcripts (1988) Genes Dev., 2, pp. 754-765
  • Bird, G., RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation (2004) Mol. Cell Biol., 24, pp. 8963-8969
  • Cramer, P., Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution (2001) Science, 292, pp. 1863-1876
  • Natalizio, B.J., The carboxyl-terminal domain of RNA polymerase II is not sufficient to enhance the efficiency of pre-mRNA capping or splicing in the context of a different polymerase (2009) J. Biol. Chem., 284, pp. 8692-8702
  • Shepard, P.J., Hertel, K.J., The SR protein family (2009) Genome Biol., 10, p. 242
  • Eperon, L.P., Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? (1988) Cell, 54, pp. 393-401
  • Lazarev, D., Manley, J.L., Concurrent splicing and transcription are not sufficient to enhance splicing efficiency (2007) RNA, 13, pp. 1546-1557
  • Das, R., Functional coupling of RNAP II transcription to spliceosome assembly (2006) Genes Dev., 20, pp. 1100-1109
  • Gornemann, J., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex (2005) Mol. Cell, 19, pp. 53-63
  • Kornblihtt, A.R., Multiple links between transcription and splicing (2004) RNA, 10, pp. 1489-1498
  • Listerman, I., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822
  • Pandya-Jones, A., Black, D.L., Co-transcriptional splicing of constitutive and alternative exons (2009) RNA, 15, pp. 1896-1908
  • Singh, J., Padgett, R.A., Rates of in situ transcription and splicing in large human genes (2009) Nat. Struct. Mol. Biol., 16, pp. 1128-1133
  • Wetterberg, I., In situ transcription and splicing in the Balbiani ring 3 gene (2001) EMBO J., 20, pp. 2564-2574
  • Hicks, M.J., Linking splicing to Pol II transcription stabilizes pre-mRNAs and influences splicing patterns (2006) PLoS Biol., 4, pp. e147
  • Das, R., SR proteins function in coupling RNAP II transcription to pre-mRNA splicing (2007) Mol. Cell, 26, pp. 867-881
  • Lacadie, S.A., In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants (2006) Genes Dev., 20, pp. 2055-2066
  • Listerman, I., Co-transcriptional coupling of splicing factor recruitment and pre-mRNA splicing in mammalian cells (2006) Nat. Struct. Mol. Biol., 13, pp. 815-822
  • Sapra, A.K., SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo (2009) Mol. Cell, 34, pp. 179-190
  • Aguilera, A., Gomez-Gonzalez, B., Genome instability: a mechanistic view of its causes and consequences (2008) Nat. Rev. Genet., 9, pp. 204-217
  • Li, X., Manley, J.L., Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability (2005) Cell, 122, pp. 365-378
  • de la Mata, M., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol. Cell, 12, pp. 525-532
  • Kadener, S., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J., 20, pp. 5759-5768
  • de la Mata, M., First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal (2010) RNA, 16, pp. 904-912
  • Kornblihtt, A.R., Coupling transcription and alternative splicing (2007) Adv. Exp. Med. Biol., 623, pp. 175-189
  • Batsche, E., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat. Struct. Mol. Biol., 13, pp. 22-29
  • Schor, I.E., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 4325-4330
  • Auboeuf, D., Coordinate regulation of transcription and splicing by steroid receptor coregulators (2002) Science, 298, pp. 416-419
  • Cramer, P., Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer (1999) Mol. Cell, 4, pp. 251-258
  • Kornblihtt, A.R., Promoter usage and alternative splicing (2005) Curr. Opin. Cell Biol., 17, pp. 262-268
  • Pagani, F., Promoter architecture modulates CFTR exon 9 skipping (2003) J. Biol. Chem., 278, pp. 1511-1517
  • Robson-Dixon, N.D., Garcia-Blanco, M.A., MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb (2004) J. Biol. Chem., 279, pp. 29075-29084
  • Auboeuf, D., CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing (2004) Mol. Cell Biol., 24, pp. 442-453
  • Nogues, G., Transcriptional activators differ in their abilities to control alternative splicing (2002) J. Biol. Chem., 277, pp. 43110-43114
  • Munoz, M.J., DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation (2009) Cell, 137, pp. 708-720
  • Darzacq, X., In vivo dynamics of RNA polymerase II transcription (2007) Nat. Struct. Mol. Biol., 14, pp. 796-806
  • Gomes, N.P., Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program (2006) Genes Dev., 20, pp. 601-612
  • Baskaran, R., Nuclear c-Abl is a COOH-terminal repeated domain (CTD)-tyrosine (CTD)-tyrosine kinase-specific for the mammalian RNA polymerase II: possible role in transcription elongation (1999) Cell Growth Differ., 10, pp. 387-396
  • Akhtar, M.S., TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II (2009) Mol. Cell, 34, pp. 387-393
  • Chapman, R.D., Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7 (2007) Science, 318, pp. 1780-1782
  • Egloff, S., Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression (2007) Science, 318, pp. 1777-1779
  • Kolasinska-Zwierz, P., Differential chromatin marking of introns and expressed exons by H3K36me3 (2009) Nat. Genet., 41, pp. 376-381
  • Schwartz, S., Chromatin organization marks exon-intron structure (2009) Nat. Struct. Mol. Biol., 16, pp. 990-995
  • Tilgner, H., Nucleosome positioning as a determinant of exon recognition (2009) Nat. Struct. Mol. Biol., 16, pp. 996-1001
  • Allo, M., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat. Struct. Mol. Biol., 16, pp. 717-724
  • Luco, R.F., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-1000
  • Campos, E.L., Reinberg, D., Histones: annotating chromatin (2009) Annu. Rev. Genet., 43, pp. 559-599
  • Chapman, R.D., The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability (2004) Nucleic Acids Res., 32, pp. 35-44
  • Rosonina, E., Blencowe, B.J., Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3'-end cleavage (2004) RNA, 10, pp. 581-589
  • Chapman, R.D., Molecular evolution of the RNA polymerase II CTD (2008) Trends Genet., 24, pp. 289-296
  • Fong, N., Bentley, D.L., Capping, splicing, and 3' processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD (2001) Genes Dev., 15, pp. 1783-1795

Citas:

---------- APA ----------
Muñoz, M.J., de la Mata, M. & Kornblihtt, A.R. (2010) . The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends in Biochemical Sciences, 35(9), 497-504.
http://dx.doi.org/10.1016/j.tibs.2010.03.010
---------- CHICAGO ----------
Muñoz, M.J., de la Mata, M., Kornblihtt, A.R. "The carboxy terminal domain of RNA polymerase II and alternative splicing" . Trends in Biochemical Sciences 35, no. 9 (2010) : 497-504.
http://dx.doi.org/10.1016/j.tibs.2010.03.010
---------- MLA ----------
Muñoz, M.J., de la Mata, M., Kornblihtt, A.R. "The carboxy terminal domain of RNA polymerase II and alternative splicing" . Trends in Biochemical Sciences, vol. 35, no. 9, 2010, pp. 497-504.
http://dx.doi.org/10.1016/j.tibs.2010.03.010
---------- VANCOUVER ----------
Muñoz, M.J., de la Mata, M., Kornblihtt, A.R. The carboxy terminal domain of RNA polymerase II and alternative splicing. Trends Biochem. Sci. 2010;35(9):497-504.
http://dx.doi.org/10.1016/j.tibs.2010.03.010