Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Juvenile hormones (JHs) play key roles in regulating metamorphosis and reproduction in insects. The last two steps of JH synthesis diverge depending on the insect order. In Lepidoptera, epoxidation by a P450 monooxygenase precedes esterification by a juvenile hormone acid methyltransferase (JHAMT). In Orthoptera, Dictyoptera, Coleoptera and Diptera epoxidation follows methylation. The aim of our study was to gain insight into the structural basis of JHAMT's substrate recognition as a means to understand the divergence of these pathways. Homology modeling was used to build the structure of Aedes aegypti JHAMT. The substrate binding site was identified, as well as the residues that interact with the methyl donor (S-adenosylmethionine) and the carboxylic acid of the substrate methyl acceptors, farnesoic acid (FA) and juvenile hormone acid (JHA). To gain further insight we generated the structures of Anopheles gambiae, Bombyx mori, Drosophila melanogaster and Tribolium castaneum JHAMTs. The modeling results were compared with previous experimental studies using recombinant proteins, whole insects, corpora allata or tissue extracts. The computational study helps explain the selectivity toward the (10R)-JHA isomer and the reduced activity for palmitic and lauric acids. The analysis of our results supports the hypothesis that all insect JHAMTs are able to recognize both FA and JHA as substrates. Therefore, the order of the methylation/epoxidation reactions may be primarily imposed by the epoxidase's substrate specificity. In Lepidoptera, epoxidase might have higher affinity than JHAMT for FA, so epoxidation precedes methylation, while in most other insects there is no epoxidation of FA, but esterification of FA to form MF, followed by epoxidation to JH III. © 2010.

Registro:

Documento: Artículo
Título:Juvenile hormone synthesis: "esterify then epoxidize" or " epoxidize then esterify" ? Insights from the structural characterization of juvenile hormone acid methyltransferase
Autor:Defelipe, L.A.; Dolghih, E.; Roitberg, A.E.; Nouzova, M.; Mayoral, J.G.; Noriega, F.G.; Turjanski, A.G.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e INQUIMAE/CONICET, Buenos Aires, Argentina
Quantum Theory Project, University of Florida, Gainesville, FL, United States
Department of Biological Sciences, Florida International University, Miami, FL, United States
Palabras clave:Farnesoic acid; Homology modeling; Juvenile hormone acid; Juvenile hormone synthesis; Methyltransferase; P450 epoxidase; farnesoic acid; insect protein; juvenile hormone; methyltransferase; unsaturated fatty acid; Aedes; amino acid sequence; animal; article; binding site; biosynthesis; chemical structure; chemistry; enzyme specificity; enzymology; genetics; insect; isomerism; metabolism; molecular genetics; protein processing; sequence alignment; Aedes; Amino Acid Sequence; Animals; Binding Sites; Fatty Acids, Unsaturated; Insect Proteins; Insects; Isomerism; Juvenile Hormones; Methyltransferases; Models, Molecular; Molecular Sequence Data; Protein Processing, Post-Translational; Sequence Alignment; Substrate Specificity; Aedes aegypti; Anopheles gambiae; Bombyx mori; Coleoptera; Dictyoptera; Diptera; Drosophila melanogaster; Hexapoda; Lepidoptera; Orthoptera; Tribolium (beetle); Tribolium castaneum
Año:2011
Volumen:41
Número:4
Página de inicio:228
Página de fin:235
DOI: http://dx.doi.org/10.1016/j.ibmb.2010.12.008
Título revista:Insect Biochemistry and Molecular Biology
Título revista abreviado:Insect Biochem. Mol. Biol.
ISSN:09651748
CODEN:IBMBE
CAS:farnesoic acid, 7548-13-2; methyltransferase, 9033-25-4; Fatty Acids, Unsaturated; Insect Proteins; Juvenile Hormones; Methyltransferases, 2.1.1.-; farnesoic acid, 7548-13-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09651748_v41_n4_p228_Defelipe

Referencias:

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J. Mol. Biol., 215, pp. 403-410
  • Baker, F.C., Mauchamp, B., Tsai, L.W., Schooley, D.A., Farnesol and farnesal dehydrogenase(s) in corpora allata of the tobacco hornworm moth, Manduca sexta (1983) J. Lipid Res., 24, pp. 1586-1594
  • Bellés, X., Martin, D., Piulachs, M.D., The mevalonate pathway and the synthesis of juvenile hormone in insects (2005) Annu. Rev. Entomol., 50, pp. 181-190
  • Bower, M.J., Cohen, F.E., Dunbrack, R.L., Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool (1997) J. Mol. Biol., 267, pp. 1268-1282
  • Cao, L., Zhang, P., Grant, D.F., An insect farnesyl phosphatase homologous to the N-terminal domain of soluble epoxide hydrolase (2009) Biochem. Biophys. Res. Comm., 380, pp. 188-192
  • Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Onufriev, A., Woods, R.J., The Amber biomolecular simulation programs (2005) J. Comput. Chem., 26, pp. 1668-1688
  • Chung, S.Y., Subbiah, S., A structural explanation for the twilight zone of protein sequence homology (1996) Structure, 4, pp. 1123-1127
  • Clamp, M., Cuff, J., Searle, S.M., Barton, G.J., The Jalview Java alignment editor (2004) Bioinformatics, 20, pp. 426-427
  • Eargle, J., Wright, D., Luthey-Schulten, Z., Multiple Alignment of protein structures and sequences for VMD (2006) Bioinformatics, 22, pp. 504-506
  • Eswar, N., Eramian, D., Webb, B., Shen, M.Y., Sali, A., Protein structure modeling with MODELLER (2008) Methods Mol. Biol., 426, pp. 145-159
  • Feyereisen, R., Pratt, G.E., Hamnett, A.F., Enzymic synthesis of juvenile hormone in Locusta corpora allata: evidence for a microsomal cytochrome P-450 linked methyl farneosate epoxidase (1981) Eur. J. Biochem., 118, pp. 231-238
  • Goodman, W.G., Granger, N.A., The juvenile hormones (2005) Comprehensive Molecular Insect Science, 6, pp. 55-115. , Elsevier, L.I. Gilbert, K. Iatrou, S.S. Gill (Eds.)
  • Hammock, B.D., NADP dependent epoxidation of methyl farneosate to juvenile hormone in the cockroach Blaberus giganteus L (1975) Life Sci., 17, pp. 323-328
  • Helvig, C., Koener, J.F., Unnithan, G.C., Feyereisen, R., CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata (2004) Proc. Natl. Acad. Sci. U.S.A., 101, pp. 4024-4029
  • Hooft, R.W., Vriend, G., Sander, C., Abola, E.E., Errors in protein structures (1996) Nature, 381, p. 272
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., Simmerling, C., Comparison of multiple Amber force fields and development of improved protein backbone parameters (2006) Proteins, 65, pp. 712-725
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graph., 14, pp. 27-38
  • Kotaki, T., Shinada, T., Kaihara, K., Ohfune, Y., Numata, H., Structure determination of a new juvenile hormone from a Heteropteran insect (2009) Org. Lett., 11, pp. 5234-5237
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948
  • Law, J.H., Biosynthesis of juvenile hormones in insects (1983) Biosynthesis of Isoprenoid Compounds, 2, pp. 507-534. , Wiley and Sons, J.W. Porter, S.L. Spurgeon (Eds.)
  • Leach, A.R., (2001) Molecular Modeling, Principles and Applications, , Pearson Prentice Hall, Essex, England
  • Li, Y., Unnithan, C., Hernandez-Martinez, S., Feyereisen, R., Noriega, F.G., Activity of the corpora allata of adult female Aedes aegypti: effects of mating and feeding (2003) Insect Biochem. Mol. Biol., 33, pp. 1307-1315
  • Livingstone, C.D., Barton, G.J., Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation (1993) Comput. Appl. Biosci., 9, pp. 745-756
  • Mayoral, J.G., Nouzova, M., Navare, A., Noriega, F.G., NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis (2009) Proc. Natl. Acad. Sci. U.S.A., 106, pp. 21091-21096
  • Mayoral, J.G., Nouzova, M., Yoshiyama, M., Shinoda, T., Hernandez-Martinez, S., Dolghih, E., Turjanski, A.G., Noriega, F.G., Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes (2009) Insect Biochem. Mol. Biol., 39, pp. 31-37
  • McGuffin, L.J., Bryson, K., Jones, D.T., The PSIPRED protein structure prediction server (2000) Bioinformatics, 16, pp. 404-405
  • Minakuchi, C., Namiki, T., Yoshiyama, M., Shinoda, T., RNAi-mediated knockdown of juvenile hormone acid O-methyltransferase gene causes precocious metamorphosis in the red flour beetle Tribolium castaneum (2008) FEBS J., 275, pp. 2919-2931
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791
  • Niwa, R., Niimi, T., Honda, N., Yoshiyama, M., Itoyama, K., Kataoka, H., Shinoda, T., Juvenile hormone acid O-methyltransferase in Drosophila melanogaster (2008) Insect Biochem. Mol. Biol., 38, pp. 714-720
  • Poirot, O., O'Toole, E., Notredame, C., Tcoffee@igs: a web server for computing, evaluating and combining multiple sequence alignments (2003) Nucleic Acids Res., 31, pp. 3503-3506
  • Pratt, G.E., Tobe, S.S., Juvenile hormone radiobiosynthesised by corpora allata of adult female locust in vitro (1974) Life Sci., 14, pp. 575-586
  • Pratt, G.E., Stott, K.M., Brooks, G.T., Jennings, R.C., Hamnett, A.F., Alexander, B.A.J., Utilization of farnesoic acid analogues by the o-methyl transferase from corpora allata of adult female Locusta migratoria (1981) Juvenile Hormone Biochemistry, 15, pp. 107-121. , Elsevier, G.E. Pratt, G.T. Brooks (Eds.)
  • Reibstein, D., Law, J.H., Bowlus, S.B., Katzenellenbogen, J.A., Enzymatic synthesis of juvenile hormone in Manduca sexta (1976) The Juvenile Hormones, pp. 131-146. , Plenum Press, L.I. Gilbert (Ed.)
  • Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J. Mol. Biol., 234, pp. 779-815
  • Schooley, D.A., Baker, F.C., Juvenile hormone biosynthesis (1985) Comprehensive Insect Physiology. Biochemistry and Pharmacology, 7, pp. 363-389. , Pergamon Press, Oxford, G.A. Kerkut, L.I. Gilbert (Eds.)
  • Shinoda, T., Itoyama, K., Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis (2003) Proc. Natl. Acad. Sci. U.S.A., 100, pp. 11986-11991
  • Shinoda, T., Kozaki, T., Namiki, T., Mita, K., CYP15C1 encodes the cytochrome P450 that catalyzes epoxidation of farnesoic acid to JH acid in the corpora allata of Bombyx mori (2007), p. 34. , In: Abstracts Ninth International Conference on Juvenile Hormones, York, UK; Stone, J., (1998) An Efficient Library for Parallel Ray Tracing and Animation. Master Thesis, , Computer Science Department, University of Missouri-Rolla
  • Tobe, S.S., Pratt, G.E., The influence of substrate concentrations on the rate of insect juvenile hormone biosynthesis by corpora allata of the desert locust in vitro (1974) Biochem. J., 144, pp. 107-113
  • Tobe, S.S., Stay, B., Structure and regulation of the corpus allatum (1985) Adv. In Insect. Phys., 18, pp. 305-432
  • Weaver, R.J., Pratt, G.E., Hamnett, A.F., Jennings, R.C., The influence of incubation conditions on the rates of juvenile hormone biosynthesis by corpora allata isolated from adult females of the beetle Tenebrio molitor (1980) Insect Biochem., 10, pp. 245-254
  • Zubieta, C., Ross, J.R., Koscheski, P., Yang, Y., Pichersky, E., Noel, J.P., Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family (2003) Plant Cell, 15, pp. 1704-1716

Citas:

---------- APA ----------
Defelipe, L.A., Dolghih, E., Roitberg, A.E., Nouzova, M., Mayoral, J.G., Noriega, F.G. & Turjanski, A.G. (2011) . Juvenile hormone synthesis: "esterify then epoxidize" or " epoxidize then esterify" ? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochemistry and Molecular Biology, 41(4), 228-235.
http://dx.doi.org/10.1016/j.ibmb.2010.12.008
---------- CHICAGO ----------
Defelipe, L.A., Dolghih, E., Roitberg, A.E., Nouzova, M., Mayoral, J.G., Noriega, F.G., et al. "Juvenile hormone synthesis: "esterify then epoxidize" or " epoxidize then esterify" ? Insights from the structural characterization of juvenile hormone acid methyltransferase" . Insect Biochemistry and Molecular Biology 41, no. 4 (2011) : 228-235.
http://dx.doi.org/10.1016/j.ibmb.2010.12.008
---------- MLA ----------
Defelipe, L.A., Dolghih, E., Roitberg, A.E., Nouzova, M., Mayoral, J.G., Noriega, F.G., et al. "Juvenile hormone synthesis: "esterify then epoxidize" or " epoxidize then esterify" ? Insights from the structural characterization of juvenile hormone acid methyltransferase" . Insect Biochemistry and Molecular Biology, vol. 41, no. 4, 2011, pp. 228-235.
http://dx.doi.org/10.1016/j.ibmb.2010.12.008
---------- VANCOUVER ----------
Defelipe, L.A., Dolghih, E., Roitberg, A.E., Nouzova, M., Mayoral, J.G., Noriega, F.G., et al. Juvenile hormone synthesis: "esterify then epoxidize" or " epoxidize then esterify" ? Insights from the structural characterization of juvenile hormone acid methyltransferase. Insect Biochem. Mol. Biol. 2011;41(4):228-235.
http://dx.doi.org/10.1016/j.ibmb.2010.12.008