Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In oil contaminated environments the poor carbon source availability, the presence of toxic compounds like benzene, toluene, and xylene (BTX), and other biotic and abiotic stresses can reduce bacteria viability and consequently, xenobiotic biodegradation. Selection of bacteria with the capability to tolerate and degrade monoaromatic compounds, synthesize biosurfactants and accumulate biopolymers that enhance stress tolerance could be a good approach to find a suitable bioaugmentation agent. In this work two Pseudomonas strains were isolated from an oil refinery wastewater based on their capabilities to grow using several hydrocarbons as sole carbon source and to accumulate polyhydroxyalkanoates. Both strains were able to synthesize rhamnolipids as surfactant compounds. One of these isolates, Pseudomonas sp. KA, was able to degrade benzene, toluene, and xylene, and to tolerate them at high concentrations. A molecular screening of the key genes involved in BTX degradation showed that both strains resulted positive for xylA and xylE genes. Pseudomonas sp. KA was also positive for todC1. The presence of both TOL and TOD degradation pathways, a rare characteristic in Pseudomonas species, could be useful for bioremediation purposes. © 2011 Elsevier Ltd.

Registro:

Documento: Artículo
Título:Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation
Autor:Di Martino, C.; López, N.I.; Raiger Iustman, L.J.
Filiación:Dpto. de Qca. Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - INQUIBICEN, CONICET, Intendente Güiraldes 2160 Pab 2, Piso 4, 1428 Buenos Aires, Argentina
Palabras clave:Biosurfactant; BTEX; Oil bioremediation agent; Polyhydroxyalkanoates; Pseudomonas; Bio surfactant; Bioremediation agent; BTEX; Polyhydroxyalkanoates; Pseudomonas; Benzene; Biodegradation; Biomolecules; Biopolymers; Bioremediation; Biotechnology; Degradation; Genes; Hydrocarbons; Petroleum refineries; Pollution; Surface active agents; Toluene; Wastewater; Xylene; Bacteria; bacterium; benzene; biodegradation; bioremediation; concentration (composition); ester; growth rate; industrial waste; microbial activity; polymer; surfactant; toluene; wastewater; xylene; Bacteria (microorganisms); Pseudomonas; Pseudomonas sp.
Año:2012
Volumen:67
Página de inicio:15
Página de fin:20
DOI: http://dx.doi.org/10.1016/j.ibiod.2011.11.004
Título revista:International Biodeterioration and Biodegradation
Título revista abreviado:Int. Biodeterior. Biodegrad.
ISSN:09648305
CODEN:IBBIE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09648305_v67_n_p15_DiMartino

Referencias:

  • Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Research, 25, pp. 3389-3402
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Bacosa, H., Suto, K., Inoue, C., Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium (2010) International Biodeterioration and Biodegradation, 64, pp. 702-710
  • Braunegg, G., Sonnleitner, B., Lafferty, R.M., Arapid gas chromatographic method for the determination of poly-ßhydroxybutyric acid in microbial biomass (1978) European Journal of Applied Microbiology and Biotechnology, 6, pp. 29-37
  • Brim, H., Osborne, J.P., Kostandarithes, H.M., Fredrickson, J.K., Wackett, L.P., Daly, M.J., Deinococcus radiodurans engineered for complete toluene degradation facilitates Cr(VI) reduction (2006) Microbiology, 152, pp. 2469-2477
  • Christofoletti Mazzeo, D.E., Levy, C.E., de Franceschi de Angelis, D., Marin-Morales, M.A., BTEX biodegradation by bacteria from effluents of petroleum refinery (2010) Science of the Total Environment, 408, pp. 4334-4340
  • Coleman, W.E., Munch, J.W., Streicher, R.P., Ringhand, P., Kopfler, F., The identification and measurement of components in gasoline, kerosene, and no. 2 fuel oil that partition into the aqueous phase after mixing (1984) Archives of Environmental Contamination and Toxicology, 13, pp. 171-174
  • Colombo, M., Dell'Amico, E., Cavalca, L., Andreoni, V., Biodegradation of BTX mixture by Pseudomonas strains: monitoring of two co-cultured strains by polymerase chain reaction of catabolic genes (2004) Annals of Microbiology, 54, pp. 381-392
  • Cooper, D.G., Goldenberg, B.G., Surface active agents of two Bacillus species (1987) Applied and Environmental Microbiology, 53, pp. 224-229
  • Dawson, J.J.C., Iroegbu, C.O., Maciel, H., Paton, G.I., Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils (2008) Journal of Applied Microbiology, 104, pp. 141-151
  • de Lorenzo, V., Recombinant bacteria for environmental release: what went wrong and what we have learnt from it (2009) Clinical Microbiology and Infection, 15, pp. 63-65
  • Haro, M.A., de Lorenzo, V., Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene (2001) Journal of Biotechnology, 85, pp. 103-113
  • Hendrickx, B., Junca, H., Vosahlova, J., Lindner, A., Ruegg, I., Bucheli-Witschel, M., Faber, F., Springael, C., Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site (2006) Journal of Microbiological Methods, 64, pp. 250-265
  • Hommel, R.K., Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms (1990) Biodegradation, 1, pp. 107-109
  • Kloos, K., Munch, J.M., Schloter, M., Anew method for the detection of alkane monooxygenase homologous genes (alkB) in soils based on PCR-hybridization (2006) Journal of Microbiological Methods, 66, pp. 486-496
  • Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Formation of Polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates (1988) Applied and Environmental Microbiology, 54, pp. 2924-2932
  • López, N.I., Floccari, M.E., Garcia, A.F., Steinbüchel, A., Mendez, B.S., Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters (1995) FEMS Microbiology Ecology, 16, pp. 95-101
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Pötter, M., Steinbüchel, A., Méndez, B., Pseudomonas extremaustralis sp. nov. A poly(3-hydroxybutyrate) producer isolated from an Antarctic environment (2009) Current Microbiology, 59, pp. 514-519
  • Marchal, R., Penel, S., Solano-Serena, F., Vandecasteele, J.P., Gasoline and diesel oil biodegradation (2003) Oil & Gas Science and Technology, 58, pp. 441-448
  • Mrozik, A., Piotrowska-Seget, Z., Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds (2010) Microbiological Research, 165, pp. 363-375
  • Nikodinovic, J., Kenny, S.T., Babu, R.P., Woods, T., Blau, W.J., O'Connor, K.E., Theconversion of BTEX compounds by single and defined mixed cultures to medium-chain-length polyhydroxyalkanoate (2008) Applied Microbiology and Biotechnology, 80, pp. 665-673
  • Ostle, A., Holt, J.G., Nile Blue A as a fluorescent stain for poly-hydroxybutyrate (1982) Applied and Environmental Microbiology, 44, pp. 238-241
  • Pham, T., Webb, J., Rehm, B., The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation (2004) Microbiology, 150, pp. 3405-3413
  • Prescott, L.M., Harley, J.P., Klein, D.A., (2002) Microbiology, p. 1015. , McGraw-Hill, New York
  • Ron, E.Z., Rosenberg, E., Biosurfactants and oil bioremediation (2002) Current Opinion in Biotechnology, 13, pp. 249-252
  • Ruiz, J.A., López, N.I., Méndez, B.S., RpoS gene expression in carbon starved cultures of the polyhydroxyalkanoate accumulating species Pseudomonas oleovorans (2004) Current Microbiology, 48, pp. 396-400
  • Sem, R., Biotechnology in petroleum recovery: the microbial EOR (2008) Progress in Energy and Combustion Science, 34, pp. 714-724
  • Shete, A.M., Wadhawa, G., Banat, I.M., Chopade, B.A., Mapping of patents on bioemildifier and biosurfactant: a review (2006) Journal of Scientific & Industrial Research, 65, pp. 91-115
  • Skerker, J.M., Lucks, J.B., Arkin, A.P., Evolution, ecology and the engineered organism: lessons for synthetic biology (2009) Genome Biology, 10, pp. 114-117
  • Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Molecular Biology and Evolution, 24, pp. 1596-1599
  • Thompson, I.P., van der Gast, C.J., Ciric, L., Singer, A.C., Bioaugmentation for bioremediation: the challenge of strain selection (2005) Environmental Microbiology, 7, pp. 909-915
  • Tsao, C.W., Song, H.G., Bartha, R., Metabolism of benzene, toluene, and xylene hydrocarbons in soil (1998) Applied and Environmental Microbiology, 64, pp. 4924-4929
  • USEPA Method 8015:Nonhalogenated Organics Using GC/FID (1996), U.S. Environmental Protection Agency, Research Triangle Park, NC; Wang, L., Qiao, N., Sun, F.Q., Shao, Z.Z., Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment (2008) Extremophiles, 12, pp. 335-342
  • Wei, Y.H., Lai, H.C., Chen, S.Y., Yeh, M.S., Chang, J.S., Biosurfactant production by Serratia marcencens SS-1 and its isogenic strain SMΔR defective in SpnR, a quorum-sensing LuxR family protein (2004) Biotechnology Letters, 26, pp. 799-802
  • Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N., He, B., Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater (2009) Process Biochemistry, 44, pp. 302-308

Citas:

---------- APA ----------
Di Martino, C., López, N.I. & Raiger Iustman, L.J. (2012) . Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. International Biodeterioration and Biodegradation, 67, 15-20.
http://dx.doi.org/10.1016/j.ibiod.2011.11.004
---------- CHICAGO ----------
Di Martino, C., López, N.I., Raiger Iustman, L.J. "Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation" . International Biodeterioration and Biodegradation 67 (2012) : 15-20.
http://dx.doi.org/10.1016/j.ibiod.2011.11.004
---------- MLA ----------
Di Martino, C., López, N.I., Raiger Iustman, L.J. "Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation" . International Biodeterioration and Biodegradation, vol. 67, 2012, pp. 15-20.
http://dx.doi.org/10.1016/j.ibiod.2011.11.004
---------- VANCOUVER ----------
Di Martino, C., López, N.I., Raiger Iustman, L.J. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int. Biodeterior. Biodegrad. 2012;67:15-20.
http://dx.doi.org/10.1016/j.ibiod.2011.11.004