Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40-350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe 3 O 4 @Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe 3 O 4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects. © 2014 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer
Autor:Mietta, J.L.; Jorge, G.; Martín Negri, R.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, ́tica y Química Física, Universidad de Buenos Aires, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina
Palabras clave:electrically conductive composite; flexible stress sensor; piezoresistivity; structured magnetoelastomer composites; Anisotropy; Electric conductivity; Electric contacts; Metals; Microchannels; Needles; Sensors; Silicones; Stress measurement; Electrically conductive composites; Magnetoresistance effects; Magnetorheological elastomers; Piezoresistivity; Polydimethylsiloxane PDMS; Stress sensor; Superparamagnetic nanoparticles; Uniform magnetic fields; Silver
Año:2014
Volumen:23
Número:8
DOI: http://dx.doi.org/10.1088/0964-1726/23/8/085026
Título revista:Smart Materials and Structures
Título revista abreviado:Smart Mater Struct
ISSN:09641726
CODEN:SMSTE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09641726_v23_n8_p_Mietta

Referencias:

  • Li, W.H., Zhang, X.Z., Du, H., Visakh, P.M., Thomas, S., Chandra, A.K., Mathew, A.P., Magnetorheological elastomers and their applications Advances in Elastomers i (2013) Advanced Structured Materials, pp. 357-374
  • Danas, K., Kankanala, S.V., Triantafyllidis, N., Experiments and modeling of iron-particle-filled magnetorheological elastomers (2012) J. Mech. Phys. Solids, 60, pp. 120-138. , 10.1016/j.jmps.2011.09.006 0022-5096
  • Bica, I., Liu, Y.D., Choi, H.J., Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer (2012) Colloid Polym. Sci., 290, pp. 1115-1122. , 10.1007/s00396-012-2627-9
  • Varga, Z., Filipcsei, G., Zrinyi, M., Magnetic field sensitive functional elastomers with tuneable elastic modulus (2006) Polymer, 47 (1), pp. 227-233. , DOI 10.1016/j.polymer.2005.10.139, PII S0032386105016125
  • Ivaneyko, D., Toshchevikov, V.P., Saphiannikova, M., Heinrich, G., Magneto-sensitive elastomers in a homogeneous magnetic field: A regular rectangular lattice model (2011) Macromol. Theory Simul., 20, pp. 411-424. , 10.1002/mats.v20.6 1022-1344
  • Shahrivar, K., De Vicente, J., Thermoresponsive polymer-based magneto-rheological (MR) composites as a bridge between MR fluids and MR elastomers (2013) Soft Matter, 9, pp. 11451-11456. , 10.1039/c3sm52397g 1744-683X
  • Stepanov, G.V., Abramchuk, S.S., Grishin, D.A., Nikitin, L.V., Kramarenko, E.Yu., Khokhlov, A.R., Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers (2007) Polymer, 48 (2), pp. 488-495. , DOI 10.1016/j.polymer.2006.11.044, PII S0032386106012912
  • Varga, Z., Filipcsei, G., Zrinyi, M., Magnetic field sensitive functional elastomers with tuneable elastic modulus (2006) Polymer, 47 (1), pp. 227-233. , DOI 10.1016/j.polymer.2005.10.139, PII S0032386105016125
  • Keshoju, K., Sun, L., Mechanical characterization of magnetic nanowire-polydimethylsiloxane composites (2009) J. Appl. Phys., 105. , 10.1063/1.3068173 023515
  • Yang, I.-H., Yoon, J.-H., Jeong, J.-E., Jeong, U.-C., Kim, J.-S., Chung, K.H., Oh, J.-E., Magnetic-field-dependent shear modulus of a magnetorheological elastomer based on natural rubber (2013) J. Korean Phys. Soc., 62, pp. 220-228. , 10.3938/jkps.62.220 0374-4884
  • Kchit, N., Bossis, G., Piezoresistivity of magnetorheological elastomers (2008) Journal of Physics Condensed Matter, 20 (20), p. 204136. , DOI 10.1088/0953-8984/20/20/204136, PII S0953898408770073
  • Koo, J.-H., Khan, F., Jang, D.-D., Jung, H.-J., Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings (2010) Smart Mater. Struct., 19. , 10.1088/0964-1726/19/11/115026 0964-1726 117002
  • Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., Negri, R.M., Anisotropic magnetoresistance and piezoresistivity in structured Fe3O4-silver particles in PDMS elastomers at room temperature (2012) Langmuir, 28, pp. 6985-6996. , 10.1021/la204823k
  • Mietta, J.L., Jorge, G., Perez, O.E., Maeder, T., Negri, R.M., Superparamagnetic anisotropic elastomer connectors exhibiting reversible magneto-piezoresistivity (2013) Sensors Actuators, 192, pp. 34-41. , 10.1016/j.sna.2012.12.018 0924-4247 A
  • Denver, H., Heiman, T., Martin, E., Gupta, A., Borca-Tasciuc, D.-A., Fabrication of polydimethylsiloxane composites with nickel nanoparticle and nanowire fillers and study of their mechanical and magnetic properties (2009) J. Appl. Phys., 106. , 10.1063/1.3224966 064909
  • Landa, R.A., Antonel, P.S., Ruiz, M.M., Perez, O.E., Butera, A., Jorge, G., Oliveira, C.L.P., Negri, R.M., Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains (2013) J. Appl. Phys., 114. , 10.1063/1.4839735 213912
  • Yang, J., Gong, X., Zong, L., Peng, C., Xuan, S., Silicon carbide-strengthened magnetorheological elastomer: Preparation and mechanical property (2013) Polym. Eng. Sci., 53, pp. 2615-2623. , 10.1002/pen.v53.12 0032-3888
  • Bica, I., Anitas, E.M., Bunoiu, M., Vatzulik, B., Juganaru, I., Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity (2014) J. Ind. Eng. Chem., , 10.1016/j.jiec.2013.12.102 0095-9014
  • Stoll, A., Mayer, M., Monkman, G.J., Shamonin, M., Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response (2014) J. Appl. Polym. Sci., 131. , 10.1002/app.39793 39793
  • Godoy, M., Moreno, A.J., Jorge, G.A., Ferrari, H.J., Antonel, P.S., Mietta, J.L., Ruiz, M., Bekeris, V., Micrometric periodic assembly of magnetotactic bacteria and magnetic nanoparticles using audio tapes (2012) J. Appl. Phys., 111. , 10.1063/1.3681380 044905
  • Butera, A., Álvarez, N., Jorge, G., Ruiz, M.M., Mietta, J.L., Negri, R.M., Microwave response of anisotropic magnetorheological elastomers: Model and experiments (2012) Phys. Rev., 86. , 10.1103/PhysRevB.86.144424 B 144424
  • Auner, N., Weis, J., (2008) Organosilicon Chemistry III: From Molecules to Materials
  • Efimenko, K., Wallace, W.E., Genzer, J., Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment (2002) Journal of Colloid and Interface Science, 254 (2), pp. 306-315. , DOI 10.1006/jcis.2002.8594
  • Eita, M., El Sayed, R., Muhammed, M., Optical properties of thin films of zinc oxide quantum dots and polydimethylsiloxane: UV-blocking and the effect of cross-linking (2012) J. Colloid Interface Sci., 387, pp. 135-140. , 10.1016/j.jcis.2012.07.065
  • Esteves, A.C.C., Brokken-Zijp, J., Laven, J., Huinink, H.P., Reuvers, N.J.W., Van, M.P., De With, G., Influence of cross-linker concentration on the cross-linking of PDMS and the network structures formed (2009) Polymer, 50, pp. 3955-3966. , 10.1016/j.polymer.2009.06.022
  • Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O., A model for the dependence of the electrical conductance with the applied stress in insulating-conducting composites (2010) J. Appl. Phys., 107. , 10.1063/1.3410799 113703
  • Ruiz, M.M., Mietta, J.L., Soledad Antonel, P., Pérez, O.E., Martín Negri, R., Jorge, G., Structural and magnetic properties of Fe2-x CoSm x O4 - Nanoparticles and Fe2-x CoSm x O4 - PDMS magnetoelastomers as a function of Sm content (2013) J. Magn. Magn. Mater., 327, pp. 11-19. , 10.1016/j.jmmm.2012.09.020 0304-8853
  • Liu, C.-X., Choi, J.-W., Strain-dependent resistance of PDMS and carbon nanotubes composite microstructures (2010) IEEE Trans. Nanotechnol., 9, pp. 590-595. , 10.1109/TNANO.2010.2060350 1536-125X
  • Shih, W.-P., Tsao, L.-C., Lee, C.-W., Cheng, M.-Y., Chang, C., Yang, Y.-J., Fan, K.-C., Flexible temperature sensor array based on a graphite- polydimethylsiloxane composite (2010) Sensors, 10, pp. 3597-3610. , 10.3390/s100403597 0746-9462
  • Lu, J., Lu, M., Bermak, A., Lee, Y.-K., Study of piezoresistance effect of carbon nanotube-PDMS composite materials for nanosensors (2007) 7th IEEE Conf. on Nanotechnology (2007), pp. 1240-1243
  • Coquelle, E., Bossis, G., Szabo, D., Giulieri, F., Micromechanical analysis of an elastomer filled with particles organized in chain-like structure (2006) Journal of Materials Science, 41 (18), pp. 5941-5953. , DOI 10.1007/s10853-006-0329-8
  • Coquelle, E., Bossis, G., Mullins effect in elastomers filled with particles aligned by a magnetic field (2006) International Journal of Solids and Structures, 43 (25-26), pp. 7659-7672. , DOI 10.1016/j.ijsolstr.2006.03.020, PII S002076830600093X
  • Schmoller, K.M., Bausch, A.R., Similar nonlinear mechanical responses in hard and soft materials (2013) Nat. Mater., 12, pp. 278-281. , 10.1038/nmat3603
  • Diani, J., Fayolle, B., Gilormini, P., A review on the Mullins effect (2009) Eur. Polym. J., 45, pp. 601-612. , 10.1016/j.eurpolymj.2008.11.017 0014-3057
  • Sreeprasad, T.S., Rodriguez, A.A., Colston, J., Graham, A., Shishkin, E., Pallem, V., Berry, V., Electron-tunneling modulation in percolating network of graphene quantum dots: Fabrication, phenomenological understanding, and humidity/pressure sensing applications (2013) Nano Lett., 13, pp. 1757-1763. , 10.1021/nl402278y
  • Shehzad, K., Zha, J.-W., Zhang, Z.-F., Yuan, J.-K., Dang, Z.-M., Piezoresistive behavior of electrically conductive carbon fillers/thermoplastic elastomer nanocomposites (2013) J. Adv. Phys., 2, pp. 70-74. , 10.1166/jap.2013.1038
  • Kchit, N., Bossis, G., Electrical resistivity mechanism in magnetorheological elastomer (2009) J. Phys. D: Appl. Phys., 42 (10). , 10.1088/0022-3727/42/10/105505 0022-3727 105505
  • Zavickis, J., Knite, M., Podins, G., Linarts, A., Orlovs, R., Polyisoprene-nanostructured carbon composite - A soft alternative for pressure sensor application (2011) Sensors Actuators, 171, pp. 38-42. , 10.1016/j.sna.2011.05.035 0924-4247 A
  • Bica, I., Liu, Y.D., Choi, H.J., Physical characteristics of magnetorheological suspensions and their applications (2013) J. Ind. Eng. Chem., 19, pp. 394-406. , 10.1016/j.jiec.2012.10.008 0095-9014
  • Bica, I., Liu, Y.D., Choi, H.J., Magnetic field intensity effect on plane electric capacitor characteristics and viscoelasticity of magnetorheological elastomer (2012) Colloid Polym. Sci., 290, pp. 1115-1122. , 10.1007/s00396-012-2627-9
  • Yu, M., Ju, B., Fu, J., Liu, X., Yang, Q., Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers (2012) J. Magn. Magn. Mater., 324, pp. 2147-2152. , 10.1016/j.jmmm.2012.02.033 0304-8853
  • Dong, X., Ma, N., Ou, J., Qi, M., Predicating magnetorheological effect of magnetorheological elastomers under normal pressure (2013) J. Phys.: Conf. Ser., 412 (1). , 10.1088/1742-6596/412/1/012035 1742-6596 012035
  • Qiao, X., Lu, X., Li, W., Chen, J., Gong, X., Yang, T., Li, W., Chen, X., Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly(styrene-b-ethylene-ethylenepropylene-b-styrene) matrix (2012) Smart Mater. Struct., 21 (11). , 10.1088/0964-1726/21/11/115028 0964-1726 115028
  • Lundberg, B., Sundqvist, B., Resistivity of a composite conducting polymer as a function of temperature, pressure, and environment: Applications as a pressure and gas concentration transducer (1986) J. Appl. Phys., 60, pp. 1074-1079. , 10.1063/1.337401
  • Martin, J.E., Anderson, R.A., Odinek, J., Adolf, D., Williamson, J., Controlling percolation in field-structured particle composites: Observations of giant thermoresistance, piezoresistance, and chemiresistance (2003) Phys. Rev., 67. , 10.1103/PhysRevB.67.014421 B 094207
  • Kchit, N., Lancon, P., Bossis, G., Thermoresistance and giant magnetoresistance of magnetorheological elastomers (2009) J. Phys. D: Appl. Phys., 42. , 10.1088/0022-3727/42/10/105505 105506
  • Lv, P., Wang, Z., Hu, Y., Yu, M., Study on effect of polydimethylsiloxane in intumescent flame retardant polypropylene (2009) J. Polym. Res., 16, pp. 81-89. , 10.1007/s10965-008-9205-3 1022-9760

Citas:

---------- APA ----------
Mietta, J.L., Jorge, G. & Martín Negri, R. (2014) . A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer. Smart Materials and Structures, 23(8).
http://dx.doi.org/10.1088/0964-1726/23/8/085026
---------- CHICAGO ----------
Mietta, J.L., Jorge, G., Martín Negri, R. "A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer" . Smart Materials and Structures 23, no. 8 (2014).
http://dx.doi.org/10.1088/0964-1726/23/8/085026
---------- MLA ----------
Mietta, J.L., Jorge, G., Martín Negri, R. "A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer" . Smart Materials and Structures, vol. 23, no. 8, 2014.
http://dx.doi.org/10.1088/0964-1726/23/8/085026
---------- VANCOUVER ----------
Mietta, J.L., Jorge, G., Martín Negri, R. A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer. Smart Mater Struct. 2014;23(8).
http://dx.doi.org/10.1088/0964-1726/23/8/085026