Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Biofilms based on waxy maize and cassava starches (cereal and tuber starch, respectively), plasticized with glycerol were characterized through their crystallinity, dynamic-mechanical behavior (DMA), thermal degradation (TGA), moisture content and water vapor permeability (WVP). X-ray diffraction experiments show that both materials were mainly amorphous, with the waxy starch presenting a discreetly A-type X-ray pattern. Microscopic investigation of the cryo-fractured surfaces supported this observation. The glass transition of the glycerol-rich phase (measured by DMA) occurs at higher temperatures for cassava than for waxy maize starch, suggesting that the dispersion level of glycerol is higher in the former. TGA showed that maize starch has a slightly higher thermal stability than cassava starch, while glycerol interacts more strongly with the last one. The WVP was 18% higher in the case of the cassava starch film. © 2009 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:A comparison between the physico-chemical properties of tuber and cereal starches
Autor:García, N.L.; Famá, L.; Dufresne, A.; Aranguren, M.; Goyanes, S.
Filiación:Laboratorio de Polímeros y Materiales Compuestos, Depto. de Física, FCEN - UBA, Ciudad Universitaria, C1428EGA Ciudad Autonoma de Buenos Aires, Argentina
Universidad Nacional de San Martín (UNSAM), Buenos Aires, Argentina
Grenoble Institute of Technology (Grenoble INP), The International School of Paper, Print Media and Biomaterials (PAGORA), BP 65, F-38402 Saint Martin d'Heres Cedex, France
INTEMA, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, 7608FDQ Mar del Plata, Argentina
Palabras clave:Biofilms; FTIR; Mechanical properties; SEM; Starch; TGA; X-ray; Cassava starch; Cassava starch films; Cereal starches; Crystallinity; Dispersion levels; Dynamic mechanical behavior; Fractured surfaces; FTIR; Higher temperatures; Maize starch; Moisture contents; Physicochemical property; Rich phase; SEM; TGA; Thermal degradations; Thermal stability; Tuber starch; Water vapor permeability; Waxy maize; Waxy maize starch; Waxy starches; X-ray patterns; Amorphous materials; Biofilms; Chemical properties; Fourier transform infrared spectroscopy; Glass transition; Glycerol; Mechanical permeability; Mechanical properties; Photodegradation; Thermogravimetric analysis; Water content; Water vapor; Starch; Manihot esculenta; Zea mays
Año:2009
Volumen:42
Número:8
Página de inicio:976
Página de fin:982
DOI: http://dx.doi.org/10.1016/j.foodres.2009.05.004
Título revista:Food Research International
Título revista abreviado:Food Res. Int.
ISSN:09639969
CODEN:FORIE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09639969_v42_n8_p976_Garcia

Referencias:

  • Alves, V.D., Mali, S., Beléia, A., Grossmann, M.V.E., Effect of glycerol and amylose enrichment on cassava starch film properties (2007) Journal of Food Engineering, 78, pp. 941-946
  • Angellier, H., Molina-Boisseau, S., Dole, P., Dufresne, A., Thermoplastic starch-waxy maize starch nanocrystals nanocomposites (2006) Biomacromolecules, 7, pp. 531-539
  • AOAC, (1990) Official methods of analysis. 13th ed., , Association of Official Analytical Chemists, Washington, DC
  • Arvanitoyannis, I., Biliaderis, C.G., Ogawa, H., Kawasaki, N., Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1 (1998) Carbohydrate Polymers, 36, pp. 89-104
  • Standard test methods for water vapor transmission of materials. Annual book of (1996), ASTM E96-00, ASTM. Philadelphia, PA: American Society for Testing and Materials; Barron, C., Bouchet, B., Della Valle, G., Gallant, D.J., Planchot, V., Microscopical study of the destructuring of waxy maize and smooth pea starches by shear and heat at low hydration (2001) Journal of Food Science, 33, pp. 289-300
  • Capron, I., Robert, P., Colonna, P., Brogly, M., Planchot, V., Starch in rubbery and glassy states by FTIR spectroscopy (2007) Carbohydrate Polymers, 68, pp. 249-259
  • Curvelo, A.A.S., Carvalho, A.J.F., Agnelli, J.A.M., Thermoplastic starch-cellulosic fibers composites: Preliminary results (2001) Carbohydrate Polymers, 45, pp. 183-188
  • Cyras, V.P., Tolosa Zenklusen, M.C., Vazquez, A., Relationship between structure and properties of modified potato starch biodegradable films (2006) Journal of Applied Polymer Science, 101, pp. 4313-4319
  • Da Roz, A.L., Carvalho, A.J.F., Gandini, A., Curvelo, A.A.S., The effect of plasticizers on thermoplastic starch compositions obtained by melt processing (2006) Carbohydrate Polymers, 63, pp. 417-424
  • De Morais Texeira, E., Da Roz, A.L., De Carvalho, A.J.F., Da Silva Curvelo, A.A., Preparation and characterisation of thermoplastic starches from cassava starch, cassava root and cassava bagasse (2005) Macromolecular Symposia, 229, pp. 266-275
  • Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Mechanical properties of tapioca-starch edible films containing sorbates (2005) LWT, 38, pp. 631-639
  • Famá, L., Flores, S.K., Gerschenson, L., Goyanes, S., Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures (2006) Carbohydrate Polymers, 66, pp. 8-15
  • Famá, L., Goyanes, S., Gerschenson, L., Influence of storage time at room temperature on the physicochemical properties of cassava starch films (2007) Carbohydrate Polymers, 70, pp. 265-273
  • Fishman, M.L., Cooke, P., White, B., Damert, W., Size distributions of amylase and amylopectin solubilised from corn starch granules (1995) Carbohydrate Polymers, 26, pp. 245-253
  • Flores, S.K., Famá, L., Rojas, A.M., Goyanes, S., Gerschenson, L., Physical properties of tapioca-starch edible films: Influence of filmmaking and potassium sorbate (2007) Food Research International, 40, pp. 257-265
  • Guinesi, L.S., Da Roz, A.L., Corradini, E., Mattoso, L.H.C., Teixeira, E.D.M., Curvelo, A.A.d.S., Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures (2006) Thermochimica Acta, 447, pp. 190-196
  • Hermansson, A.M., Svegmark, K., Developments in the understanding of starch functionality (1996) Trends in Food Science and Technology, 7, pp. 345-353
  • International Starch Institute. Science Park Aarhus, Denmark (1999-2001). <http://www.starch.dk/isi/starch/tmstarch.htm>. Acceded January 2008; Jiang, W., Qiao, J., Sun, K., Mechanical and thermal properties of thermoplastic acetylated starch/poly (ethylene-co-vinyl alcohol) blends (2006) Carbohydrate Polymers, 65, pp. 139-143
  • Kester, J.J., Fennema, O.R., Edible films and coatings: A review (1986) Food Technology, 40, pp. 47-59
  • Kristo, E., Biliaderis, C.G., Physical properties of starch nanocrystal-reinforced pullulan films (2007) Carbohydrate Polymers, 68, pp. 146-158
  • Leonel, M., Cereda, M.P., Microstructural characterization of yam starch films (2002) Ciência e Tecnologia de Alimentos, 22, pp. 65-69
  • Li, J.H., Vasanthan, T., Hoover, R., Rossnagel, B.G., Starch from hull-less barley: Morphological and structural changes in waxy, normal and high-amylose starch granules during heating (2004) Food Research International, 37, pp. 417-428
  • Lourdin, D., Valle, G., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydrate Polymers, 27, pp. 261-270
  • Mali, S., Grossmann, M.V.E., Garcia, M.A., Martino, M.M., Zaritzky, N.E., Microstructural characterization yam starch films (2002) Carbohydrate Polymers, 50, pp. 379-386
  • Manners, D., Recent developments in our understanding of amylopectin structure (1989) Carbohydrate Polymers, 11, pp. 87-112
  • Mason, W. R. (2007). Research Associate National Starch and Chemical Company. <http://eu.foodinnovation.com/pdfs/100years.pdf>. Acceded January 2008; Mathew, A.P., Dufresne, A., Plasticized waxy maize starch: Effect of polyols and relative humidity on material properties (2002) Biomacromolecules, 3, pp. 1101-1108
  • Morton, S. Chief. (2007). Agro-Industries and Post-Harvest Management Service. Functional properties of starches. <http://www.fao.org/ag/ags/Agsi/starch41.htm>. Acceded January 2008; Ophardt, C. E. (2003). Virtual chembook. Department of Chemistry, Elmhurst College, Elmhurst, IL. <http://www.elmhurst.edu/~chm/vchembook/547starch.html>. Acceded January 2008; Osella, C.A., Sanchez, H.D., Carrara, C.R., de la Torre, M.A., Buera, M.P., Water redistribution and structural changes of starch during storage of a gluten-free bread (2005) Starch, 57, pp. 208-216
  • Primo-Martin, C., Van Nieuwenhuijzen, N.H., Hamer, R.J., Van Vliet, T., Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust (2007) Journal of Cereal Science, 45, pp. 219-226
  • Rajan, A., Prasad, V.S., Abraham, T.E., Enzymatic esterification of starch using recovered coconut oil (2006) International Journal of Biological Macromolecules, 39, pp. 265-272
  • Rath, S.K., Singh, R.P., On the characterization of grafted and ungrafted starch, amylose, and amylopectin (1998) Journal of Applied Polymer Science, 70, pp. 1795-1810
  • Rindlav-Westling, A., Stading, M., Hermansson, A.M., Gatenholm, P., Structure, mechanical and barrier properties of amylose and amylopectin films (1998) Carbohydrate Polymers, 36, pp. 217-224
  • Standing, M., Rindlav-Westling, A., Gatenholm, P., Humidity-induced structural transitions in amylose and amylopectin films (2001) Carbohydrate Polymers, 45, pp. 209-217
  • Talja, R.A., Helén, H., Roos, Y.H., Jouppila, K., Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films (2007) Carbohydrate Polymers, 67, pp. 288-295
  • Tharanathan, R.N., Biodegradable films and composite coatings: Past, present and future (2003) Trends in Food Science and Technology, 14, pp. 71-78
  • Thielemans, W., Belgacem, M.N., Dufresne, A., Termoplastic starch-waxy maize starch nanocrystals nanocomposites (2006) Langmuir, 22, pp. 4804-4810
  • Thomas, D.J., Atwell, W.A., (1997) Starches, , Eagan Press Handbook Series, St. Paul, Minnesota, USA
  • Van Soest, J.J.G., Tournois, V.H., De Wit, D., Vliegenthart, J.F.G., Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy (1995) Carbohydrate Research, 279, pp. 201-214
  • Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F., Starch films reinforced with mineral clay (2003) Carbohydrate Polymers, 52, pp. 101-110

Citas:

---------- APA ----------
García, N.L., Famá, L., Dufresne, A., Aranguren, M. & Goyanes, S. (2009) . A comparison between the physico-chemical properties of tuber and cereal starches. Food Research International, 42(8), 976-982.
http://dx.doi.org/10.1016/j.foodres.2009.05.004
---------- CHICAGO ----------
García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S. "A comparison between the physico-chemical properties of tuber and cereal starches" . Food Research International 42, no. 8 (2009) : 976-982.
http://dx.doi.org/10.1016/j.foodres.2009.05.004
---------- MLA ----------
García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S. "A comparison between the physico-chemical properties of tuber and cereal starches" . Food Research International, vol. 42, no. 8, 2009, pp. 976-982.
http://dx.doi.org/10.1016/j.foodres.2009.05.004
---------- VANCOUVER ----------
García, N.L., Famá, L., Dufresne, A., Aranguren, M., Goyanes, S. A comparison between the physico-chemical properties of tuber and cereal starches. Food Res. Int. 2009;42(8):976-982.
http://dx.doi.org/10.1016/j.foodres.2009.05.004