Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The development of non-enzymatic browning in the presence of MgCl2 was evaluated in liquid and dehydrated sucrose-glycine model systems, in relation to interactions of the salt with water and/or with sucrose. In both systems, browning was accelerated by the presence of MgCl2 because of the increased sugar hydrolysis (ten times faster) and the reduction of water mobility (1H NMR T2 relaxation times) caused by this salt (between 6 and 14% lower), counteracting the inhibitory effect of water on the Maillard reaction. MgCl2 also provoked a 40% reduction on the fluorophores quantum yield, responsible also of the fluctuations observed in the fluorescence development as a function of time after 50 h at 70 °C. Molecular and supramolecular effects of the presence of MgCl2 have been observed on the Maillard reaction kinetics. These results are of high technological interest when strategies to control the Maillard reaction rate are required for a particular application. © 2018

Registro:

Documento: Artículo
Título:Non-enzymatic browning kinetics in sucrose-glycine aqueous and dehydrated model systems in presence of MgCl2
Autor:Santagapita, P.R.; Matiacevich, S.B.; Buera, M.D.P.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamentos de Industrias y Química Orgánica & CONICET, Buenos Aires, C1428AOE, Argentina
Food Properties Research Group, Departamento de Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Obispo Umaña 050, Estación Central, Santiago, Chile
Palabras clave:Fluorescence; Fluorescence quantum yield; MgCl2; Non-enzymatic browning; Non-enzymatic browning; Sucrose; Transversal relaxation time; Amino acids; Chlorine compounds; Fluorescence; Fluorophores; Glycosylation; Quantum yield; Reaction kinetics; Relaxation time; Sugar (sucrose); Fluorescence quantum yield; Function of time; Inhibitory effect; Maillard reaction; MgCl2; Non-enzymatic browning; Sugar hydrolysis; Transversal relaxations; Magnesium compounds
Año:2018
Volumen:114
Página de inicio:97
Página de fin:103
DOI: http://dx.doi.org/10.1016/j.foodres.2018.07.049
Título revista:Food Research International
Título revista abreviado:Food Res. Int.
ISSN:09639969
CODEN:FORIE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_09639969_v114_n_p97_Santagapita

Referencias:

  • Adams, A., Borrelli, R.C., Fogliano, V., de Kimpe, N., Thermal degradation studies of food melanoidins (2005) Journal of Agricultural and Food Chemistry, 53, pp. 4136-4142
  • Barreca, D., Laganà, G., Magazù, S., Migliardo, F., Gattuso, G., Belloco, E., FTIR, ESI-MS, VT-NMR and SANS study of trehalose thermal stabilization of lysozyme (2014) International Journal of Biological Macromolecules, 63, pp. 225-232
  • Bergmeyer, H.U., Grassi, M., Reagents for enzymatic analysis: enzyme α-glucosidase (1983) Methods of enzymatic analysis, 2, pp. 205-206. , H.U. Bergmeyer Verlag Chemie Gmbh Weinheim
  • van Boekel, M.A.J.S., Formation of flavour compounds in the Maillard reaction (2006) Biotechnology Advances, 24, pp. 230-233
  • Bosch, L., Alegría, A., Farré, R., Clemente, G., Fluorescence and color as markers for the Maillard reaction in milk–cereal based infant foods during storage (2007) Food Chemistry, 105, pp. 1135-1143
  • Buera, M.P., Chirife, J., Resnik, S.L., Lozano, R.D., Nonenzymatic browning in liquid model systems of highwater activity: Kinetics of color changes due to caramelization of various single sugars (1987) Journal of Food Science, 52, pp. 1059-1073
  • Cämmerer, B., Jalyschko, W., Kroh, L.W., Intact carbohydrate structures as part of the melanoidin skeleton (2002) Journal of Agricultural and Food Chemistry, 50, pp. 2083-2087
  • Eggleston, G., Vercellolti, J.R., Edye, L.A., Clarke, B.M.A., Effects of salts on the initial thermal degradation of concentrated aqueous solutions of sucrose (1996) Journal of Carbohydrate chemistry, 15, pp. 81-94
  • Gökmen, V., Şenyuva, H.Z., Acrylamide formation is prevented by divalent cations during the Maillard reaction (2007) Food Chemistry, 103, pp. 196-203
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research of the National Bureau of Standards-Physics and Chemistry, 81A, pp. 89-96
  • Hellwig, M., Henle, T., Baking, ageing, diabetes: A short history of the Maillard reaction (2014) Angewandte Chemie International Edition in English, 53, pp. 10316-10329
  • Hemmler, D., Roullier-Gall, C., Marshall, J.W., Rychlik, M., Taylor, A.J., Evolution of complex maillard chemical reactions, resolved in time (2017) Scientific Reports, 7, pp. 1-6
  • Hodge, J.E., Dehydrated foods, chemistry of Browning reactions in model systems (1953) Journal of Agricultural and Food Chemistry, 1, pp. 928-943
  • Hodge, J.E., Osman, E.M., Carbohydrates (1976) Principles of food science. Part I. Food chemistry, pp. 41-138. , O.R. Fennema Marcel Dekker New York
  • Hofmann, T., Studies on the relationship between molecular weight and the color potency of fractions obtained by thermal treatment of glucose/amino acid and glucose/protein solutions by using ultracentrifugation and color dilution techniques (1998) Journal of Agricultural and Food Chemistry, 46, pp. 3891-3895
  • Karel, M., Labuza, T.P., Nonenzymatic browning in model systems containing sucrose (1968) Journal of Agricultural and Food Chemistry, 16, pp. 717-719
  • Krause, R., Schlegel, K., Schwarzer, E., Henle, T., Formation of peptide-bound Heyns compounds (2008) Journal of Agricultural and Food Chemistry, 56, pp. 2522-2527
  • Labuza, T.P., O'Brien, J., Baynes, J.W., Interpreting the complexity of the kinetics of the Maillard reaction (1994) Maillard reactions in chemistry, food and health, pp. 176-181. , T.P. Labuza G.A. Reineccius V.M. Monnier Woodhead Publishing The Royal Society of Chemistry, Cambridge
  • Lakowicz, J.R., Instrumentation for fluorescence spectroscopy (1999) Principles of fluorescence spectroscopy, pp. 25-61. , J.R. Lakowicz 2nd ed. Kluwer Academic/Plenum Publishers New York
  • Ledl, F., Schleicher, E., New aspects of the Maillard reaction in foods and in the human body (1990) Angewandte Chemie International Edition in English, 29, pp. 565-594
  • Lee, H.S., Nagy, S., Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems (1990) Journal of Food Processing and Preservation, 14, pp. 171-178
  • Manley-Harris, M., Richards, G.N., A novel fructoglucan from the thermal polymerization of sucrose (1993) Carbohydrate Research, 240, pp. 183-196
  • Matiacevich, S.B., Buera, M.P., A critical evaluation of fluorescence as a potential marker for the Maillard reaction (2006) Food Chemistry, 95, pp. 423-430
  • Matiacevich, S.B., Santagapita, P.R., Buera, M.P., Fluorescence from the Maillard reaction and its potential application in food science (2005) Critical Reviews in Food Science & Nutrition, 45, pp. 483-495
  • Matiacevich, S.B., Santagapita, P.R., Buera, M.P., The effect of MgCl2 on the kinetics of the Maillard reaction in both aqueous and dehydrated systems (2010) Food Chemistry, 118, pp. 103-108
  • Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Buera, M.P., Effect of salt on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting (2001) Cryobiology, 43, pp. 199-210
  • Miller, D.P., de Pablo, J.J., Calorimetric solution properties of simple saccharides and their significance for the stabilization of biological structure and function (2000) Journal of Physical Chemistry B, 104, pp. 8876-8883
  • Miller, D.P., de Pablo, J.J., Corti, H.R., Thermophysical properties of trehalose and its concentrated aqueous solutions (2000) Pharmaceutical Research, 1997 (14), pp. 578-590
  • Mohsin, G.F., Schmitt, F.-J., Kanzler, C., Epping, J.D., Flemig, S., Hornemann, A., Structural characterization of melanoidin formed from D-glucose and L-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-TOF-MS (2018) Food Chemistry, 245, pp. 761-767
  • Mondaca-Navarro, B.A., Ávila-Villa, L.A., González-Córdova, A.F., López-Cervantes, J., Sánchez-Machado, D.I., Campas-Baypoli, O.N., Rodríguez-Ramírez, R., Antioxidant and chelating capacity of Maillard reaction products in amino acid sugar model systems: Applications for food processing (2017) Journal of the Science of Food and Agriculture, 97, pp. 3522-3529
  • Morel-Desrosier, N., Lhermet, C., Morel, J.P., Interaction between cations and sugars. Part 6. Calorimetric method for simultaneous determination of the stability constant and enthalpy change for weak complexation (1991) Journal of the Chemical Society Faraday Transactions, 87, pp. 2173-2177
  • Nie, S., Huang, J., Hu, J., Zhang, Y., Wang, S., Li, C., Xie, M., Effect of pH, temperature and heating time on the formation of furan in sugar–glycine model systems (2013) Food Science and Human Wellness, 2, pp. 87-92
  • O'Brien, J., Morrissey, P.A., Metal ion complexation by products of the Maillard reaction (1997) Food Chemistry, 58, pp. 17-27
  • Pelletier, G., Zwicker, A., Liana Allen, C., Schepartz, A., Miller, S.J., Aqueous glycosylation of unprotected sucrose employing glycosyl fluorides in the presence of calcium ion and trimethylamine (2017) Journal of the American Chemical Society, 138, pp. 3175-3182
  • Perez Locas, C., Yaylayan, V.A., Isotope labeling studies on the formation of 5-(Hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS (2008) Journal of Agriculture and Food Chemistry, 56, pp. 6717-6723
  • Petriella, C., Resnik, S., Lozano, R.D., Chirife, J., Kinetics of deteriorative reactions in model food systems (1985) Journal of Food Science, 50, pp. 622-626
  • Queneau, Y., Jarosz, S., Lewandowski, B., Fitremann, J., Sucrose chemistry and applications of sucrochemicals (2008) Advances in Carbohydrate Chemistry and Biochemistry, 61, pp. 217-292
  • Richards, G.N., (1988) Chemistry and processing of sugar beet and sugarcane, sugar series 9, Chapt. 16, pp. 253-264. , M.A. Clarke M.A. Godshall Elsevier Amsterdam
  • Rizzi, G.P., Chemical structure of colored Maillard reaction products (1997) Food Reviews International, 13, pp. 1-28
  • Rongere, P., Morel-Desrosiers, N., Morel, J.P., Interactions between cations and sugars. Part 8.—Gibbs energies, enthalpies and entropies of association of divalent and trivalent metal cations with xylitol and glucitol in water at 298.15 K (1995) Journal of the Chemical Society Faraday Transactions, 91, pp. 2771-2777
  • Saavedra-Leos, M.Z., Alvarez-Salas, C., Esneider-Alcalá, M.A., Toxqui-Terán, A., Pérez-García, S.A., Ruiz-Cabrera, M.A., Towards an improved calorimetric methodology for glass transition temperature determination in amorphous sugars (2012) CyTA – Journal of Food, 10, pp. 258-267
  • Santagapita, P.R., Buera, M.P., Chemical and physical stability of disaccharides as affected by the presence of MgCl2 (2006) Water properties of food, pharmaceutical, and biological materials, 9, pp. 663-669. , M.P. Buera J. Welti-Chanes P.J. Lillford H.R. Corti CRC Press-Taylor and Francis Boca Ratón
  • Santagapita, P.R., Buera, M.P., Electrolyte effects on amorphous and supercooled sugar systems (2008) Journal of Non-Crystalline Solids, 354, pp. 1760-1767
  • Santagapita, P.R., Matiacevich, S.B., Buera, M.P., Nonenzymatic browning may be inhibited or accelerated by magnesium chloride according to the level of water availability and saccharide-specific interactions (2008) Water properties in food, health, pharmaceutical and biological systems: ISOPOW 10, pp. 539-544. , T. Sajjaanantakul D. Reid Wiley-Blackwell Ames
  • Schebor, C., Burin, L., Buera, M.P., Chirife, J., Stability of hydrolysis and browning of trehalose, sucrose and raffinose in low-moisture systems in relation to their use as protectants of dried biomaterials (1999) LWT – Food Science and Technology, 32, pp. 481-485
  • Tamanna, N., Mahmood, N., Food processing and Maillard reaction products: Effect on human health and nutrition (2015) International Journal of Food Science, 2015, pp. 1-6
  • Tressl, R., Wondrak, G.T., Garbe, L.-A., Krüger, R.-P., Rewicki, D., Pentoses and hexoses as sources of new Melanoidin-like Maillard polymers (1998) Journal of Agricultural and Food Chemistry, 46, pp. 1765-1776
  • Vally, H., Misso, N.L.A., Madan, V., Clinical effects of sulphite additives (2009) Clinical & Experimental Allergy, 39, pp. 1643-1651
  • Wang, Z., Wang, J., Guo, S., Ma, S., Yu, S.-J., Kinetic modeling of Maillard reaction system subjected to pulsed electric field (2013) Innovative Food Science and Emerging Technologies, 20, pp. 121-125
  • Wong, C.W., Wijayanti, H.B., Bhandari, B.R., Maillard reaction in limited moisture and low water activity environment (2015) Water stress in biological, chemical, pharmaceutical and food systems, food engineering series, pp. 41-63. , G. Gutiérrez-López L. Alamilla-Beltrán M.P. Buera J. Welti-Chanes E. Parada-Arias G. Barbosa-Cánovas Springer New York
  • Yi, L., Liang, D., Zhou, X., Li, D., Wang, J., Molecular dynamics simulations of carbon dioxide hydrate growth in electrolyte solutions of NaCl and MgCl2 (2014) Molecular Physics, 112, pp. 3127-3137
  • You, Y., Ludescher, R.D., The effect of salts on molecular mobility in amorphous sucrose monitored by erythrosin B phosphorescence (2008) Carbohydrate Research, 343, pp. 2641-2649
  • Yuan, H., Sun, L., Chen, M., Wang, J., The simultaneous analysis of Amadori and Heyns compounds in dried fruits by high performance liquid chromatography tandem mass spectrometry (2017) Food Analytical Methods, 10, pp. 1097-1105

Citas:

---------- APA ----------
Santagapita, P.R., Matiacevich, S.B. & Buera, M.D.P. (2018) . Non-enzymatic browning kinetics in sucrose-glycine aqueous and dehydrated model systems in presence of MgCl2. Food Research International, 114, 97-103.
http://dx.doi.org/10.1016/j.foodres.2018.07.049
---------- CHICAGO ----------
Santagapita, P.R., Matiacevich, S.B., Buera, M.D.P. "Non-enzymatic browning kinetics in sucrose-glycine aqueous and dehydrated model systems in presence of MgCl2" . Food Research International 114 (2018) : 97-103.
http://dx.doi.org/10.1016/j.foodres.2018.07.049
---------- MLA ----------
Santagapita, P.R., Matiacevich, S.B., Buera, M.D.P. "Non-enzymatic browning kinetics in sucrose-glycine aqueous and dehydrated model systems in presence of MgCl2" . Food Research International, vol. 114, 2018, pp. 97-103.
http://dx.doi.org/10.1016/j.foodres.2018.07.049
---------- VANCOUVER ----------
Santagapita, P.R., Matiacevich, S.B., Buera, M.D.P. Non-enzymatic browning kinetics in sucrose-glycine aqueous and dehydrated model systems in presence of MgCl2. Food Res. Int. 2018;114:97-103.
http://dx.doi.org/10.1016/j.foodres.2018.07.049